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Abstract

We present an extrapolative model of bubbles. In the model, many investors form

their demand for a risky asset by weighing two signals—an average of the asset’s

past price changes and the asset’s degree of overvaluation. The two signals are in

conflict, and investors “waver” over time in the relative weight they put on them. The

model predicts that good news about fundamentals can trigger large price bubbles. We

analyze the patterns of cash-flow news that generate the largest bubbles, the reasons

why bubbles collapse, and the frequency with which they occur. The model also

predicts that bubbles will be accompanied by high trading volume, and that volume

increases with past asset returns. We present empirical evidence that bears on some

of the model’s distinctive predictions.
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1. Introduction

In classical accounts of financial market bubbles, the price of an asset rises dramatically

over the course of a few months or even years, reaching levels that appear to far exceed rea-

sonable valuations of the asset’s future cash flows. These price increases are accompanied by

widespread speculation and high trading volume. The bubble eventually ends with a crash,

in which prices collapse even more quickly than they rose. Bubble episodes have fascinated

economists and historians for centuries (e.g., Mackay 1841, Bagehot 1873, Galbraith 1954,

Kindleberger 1978, Shiller 2000), in part because human behavior in bubbles is so hard to

explain, and in part because of the devastating side effects of the crash.

At the heart of the standard historical narratives of bubbles is the concept of extrapolation—

the formation of expected returns by investors based on past returns. In these narratives,

extrapolators buy assets whose prices have risen because they expect them to keep ris-

ing. According to Bagehot (1873), “owners of savings . . . rush into anything that promises

speciously, and when they find that these specious investments can be disposed of at a high

profit, they rush into them more and more.” These historical narratives are supported by

more recent research on investor expectations, using both survey data and lab experiments.

Case, Shiller, and Thompson (2012) show that in the U.S. housing market, homebuyers’

expectations of future house price appreciation are closely related to lagged house price ap-

preciation. Greenwood and Shleifer (2014) present survey evidence of expectations of stock

market returns and find strong evidence of extrapolation, including during the internet bub-

ble. Extrapolation also shows up in data on expectations of participants in experimental

bubbles, where subjects can be explicitly asked about their expectations of returns. Both the

classic study of Smith, Suchanek, and Williams (1988) and more recent experiments such

as Haruvy, Lahav, and Noussair (2007) find direct evidence of extrapolative expectations

during a well-defined experimental price bubble.

In this paper, we present a new model of bubbles based on extrapolation. In doing so, we

seek to shed light on two key features commonly associated with bubbles. The first is what

Kindleberger (1978) called “displacement”—the fact that nearly all bubbles from tulips to

South Sea to the 1929 U.S. stock market to the late 1990s internet occur on the back of

good fundamental news. We would like to understand which patterns of news are likely to
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generate the largest bubbles, and whether a bubble can survive once the good news comes

to an end. Second, we would like to explain the crucial fact that bubbles feature very high

trading volume (Galbraith 1954, Carlos, Neal, and Wandschneider 2006, Hong and Stein

2007). At first sight, it is not clear how extrapolation can explain this: if, during a bubble,

all extrapolators hold similarly bullish views, they will not trade with each other.

To address these questions, we present a model in the spirit of earlier work by Cutler,

Poterba, and Summers (1990), De Long et al. (1990), Hong and Stein (1999), Barberis and

Shleifer (2003), and Barberis et al. (2015), but with some significant new elements.1 There

is a risk-free asset and a risky asset that pays a liquidating cash flow at a fixed time in the

future. Each period, news about the value of the final cash flow is publicly released. There

are two types of investors. The first type is extrapolators, who form their share demand based

on an extrapolative “growth signal”, which is a weighted average of past price changes. In a

departure from prior models, extrapolators also put some weight on a “value signal” which

measures the difference between the price and a rational valuation of the final cash flow. The

two signals, which can be interpreted as “greed” and “fear”, give the extrapolator conflicting

messages. If prices have been rising strongly and the asset is overvalued, the growth signal

encourages him to buy (“greed”) while the value signal encourages him to sell (“fear”).

Our second departure from prior models is to assume that, at each date, and indepen-

dently of other extrapolators, each extrapolator slightly but randomly shifts the relative

weight he puts on the two signals. This assumption, which we refer to as “wavering”, re-

flects extrapolators’ ambivalence about how to balance the conflicting signals they face. Such

wavering has a biological foundation in partially random allocation of attention to various

attributes of choice, which in our case are growth and value signals (see Fehr and Rangel

2011). Importantly, the degree of wavering is constant over time. We show that wavering

can plausibly account for a good deal of evidence other models have trouble with.

As in earlier models, extrapolators are met in the market by fundamental traders who

lean against the wind, buying the asset when its price is low relative to their valuation of

1These earlier papers use models of return extrapolation to examine excess volatility, return predictability,

and nonzero return autocorrelations. They do not discuss bubbles. Glaeser and Nathanson (2016) analyze

housing bubbles using a return extrapolation framework, albeit one that is different from ours.
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the final cash flow and selling when its price is high. Both extrapolators and fundamental

traders face short-sale constraints.

In line with Kindleberger’s notion of displacement, a bubble forms in our model after

a sequence of large positive cash-flow shocks. The bubble evolves in three stages. In the

first stage, the cash-flow news pushes up the asset’s price; extrapolators sharply increase

their demand for the risky asset, buying from fundamental traders. In the second stage, the

asset becomes sufficiently overvalued that the fundamental traders exit the market, leaving

the asset in the hands of the exuberant extrapolators who trade with each other because of

wavering. Once the good cash-flow news subsides, prices stop rising as rapidly, extrapolator

enthusiasm abates, and the bubble begins its collapse. In the third stage, prices fall far

enough that fundamental traders re-enter the market, buying from extrapolators.

In our model, the largest bubbles arise from sequences of cash-flow shocks that first

increase in magnitude, and then decrease. Wavering can significantly increase the size of a

bubble through a novel mechanism that we call a “price spiral”. During a bubble, the asset

can become so overvalued that even some extrapolators hit their short-sale constraints. The

bubble selects only the most bullish investors as asset holders, which leads to an even greater

overvaluation, causing even more extrapolators to leave. The bubble takes on a life of its

own, persisting well after the end of the positive cash-flow news.

The model predicts substantial volume in the first and third stages of a bubble, as

fundamental traders sell to extrapolators and vice-versa. But it predicts particularly intense

trading during the height of the bubble as extrapolators, as a consequence of wavering, trade

among themselves. During normal times, wavering has very little impact on trading volume

because it is minor. During bubbles, in contrast, the same small degree of wavering that

generates little volume in normal times endogenously generates intense volume: the growth

and value signals that extrapolators attend to are now so large in magnitude that even tiny

shifts in their relative weights lead to large portfolio adjustments. One manifestation of

such adjustments, exemplified by Isaac Newton’s participation in the South Sea bubble, is

extrapolators getting in, out, and back in the market.

After presenting the model, we compare it to two standard approaches to modeling bub-

bles: rational bubbles (Blanchard and Watson 1982, Tirole 1985) and disagreement (Harrison
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and Kreps 1978, Scheinkman and Xiong 2003). Models of rational bubbles assume homoge-

neous investors and therefore cannot explain any volume, let alone highly specific patterns

of volume documented in the literature. In addition, direct tests of the key prediction of

rational bubbles—that payoffs in the infinite future have positive present value—reject that

prediction (Giglio, Maggiori, and Stroebel 2016). Disagreement-based models can explain

high volume during bubbles with an exogenous increase in disagreement. In our model, in

contrast, the increase in volume is due to disagreement that grows endogenously over the

course of the bubble. Indeed, in our model, volume during a bubble is predicted by past

return, a new prediction that other bubble models do not share. Our framework is also

more successful at matching the extrapolative expectations that many investors hold during

bubble periods.

We examine empirically some of the model’s predictions. Using data from four historical

bubbles, we document that trading volume during a bubble is strongly predicted by the

past return. For the technology bubble of the late 1990s, we also show that, as the bubble

progresses, a larger fraction of trading volume is due to investors with extrapolator-like

characteristics. Finally, we present direct evidence of wavering for both mutual funds and

hedge funds invested in technology stocks.

Some recent research has questioned whether bubble-like price episodes are actually ir-

rational (Pastor and Veronesi 2006) or whether bubbles in the sense of prices undeniably

and substantially exceeding fundamentals over a period of time ever exist (Fama 2014). Al-

though the existence of bubbles in this sense appears uncontroversial in experimental (Smith,

Suchanek, and Williams 1988) or some unusual market (Xiong and Yu 2011) settings, our

paper does not speak to these controversies. Rather, we show how a simple model of extrap-

olative bubbles explains a lot of evidence and makes new predictions.

In the next section, we present our model. Sections 3 and 4 describe circumstances

under which bubbles occur and present our findings for price patterns and volume. Section 5

considers the possibility of negative bubbles. Section 6 compares our model to other models

of bubbles while Section 7 presents the empirical evidence. Section 8 concludes. Section 9

contains all the proofs.
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2. A model of bubbles

We consider an economy with T + 1 dates, t = 0, 1, . . . , T. There are two assets: one

risk-free and one risky. The risk-free asset earns a constant return which we normalize to

zero. The risky asset, which has a fixed supply of Q shares, is a claim to a dividend D̃T paid

at the final date, T . The value of D̃T is given by

D̃T = D0 + ε̃1 + . . . + ε̃T , (1)

where

ε̃t ∼ N(0, σ2
ε), i.i.d. over time. (2)

The value of D0 is public information at time 0, while the value of ε̃t is realized and becomes

public information at time t. The price of the risky asset, Pt, is determined endogenously.

There are two types of traders in the economy: fundamental traders and extrapolators.

The time t per-capita demand of fundamental traders for shares of the risky asset is

Dt − γσ2
ε(T − t − 1)Q − Pt

γσ2
ε

, (3)

where Dt = D0 +
∑t

j=1 εj and γ is fundamental traders’ coefficient of absolute risk aversion.

In Section 9, we show how this expression can be derived from utility maximization. In

brief, it is the demand of an investor who, at each time, maximizes a constant absolute risk

aversion (CARA) utility function defined over next period’s wealth, and who is boundedly

rational: he uses backward induction to determine his time t demand, but, at each stage

of the backward induction process, he assumes that, in future periods, the other investors

in the economy will simply hold their per-capita share of the risky asset supply. In other

words, he does not have a detailed understanding of how other investors in the economy

form their share demands. For this investor, the expression Dt − γσ2
ε(T − t − 1)Q in the

numerator of (3) is the expected price of the risky asset at the next date, date t + 1. The

numerator is therefore the expected price change over the next period, and the fundamental

trader’s demand is this expected price change scaled by the trader’s risk aversion and by his

estimate of the risk he is facing. If all investors in the economy were fundamental traders,

then, setting the expression in (3) equal to the risky asset supply of Q, the equilibrium price
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of the risky asset would be

Dt − γσ2
ε(T − t)Q. (4)

We call this the “fundamental value” of the risky asset and denote it by P F
t .2

Extrapolators are the second type of trader in the economy. There are I types of extrap-

olators, indexed by i ∈ {1, 2, . . . , I}; we explain below how one type of extrapolator differs

from another. We build up our specification of extrapolator demand for the risky asset in

three steps. An initial specification of per-capita extrapolator share demand at time t is

Xt

γσ2
ε

, where Xt ≡ (1 − θ)

t−1∑
k=1

θk−1(Pt−k − Pt−k−1) + θt−1X1, (5)

and where 0 < θ < 1.

In Section 9, we show that this is the demand of an investor who, at each time, maximizes

a CARA utility function defined over next period’s wealth, and whose belief about the

expected price change of the risky asset over the next period is a weighted average of past

price changes, with more recent price changes weighted more heavily. The parameter X1 is

a constant that measures extrapolator enthusiasm at time 1; in our numerical analysis, we

assign it a neutral, steady-state value. The specification in (5) is similar to that in previous

models of extrapolative beliefs, which have been used to shed light on asset pricing anomalies

(Cutler, Poterba, and Summers 1990, De Long et al. 1990, Hong and Stein 1999, Barberis

and Shleifer 2003, Barberis et al. 2015).3

We modify the specification in (5) in two quantitatively small but conceptually significant

ways. First, we make extrapolators pay at least some attention to how the price of the risky

asset compares to its fundamental value. Specifically, we change the demand function in (5)

2We assume, for simplicity, that fundamental traders’ estimate of the risk they are facing is given by

fundamental risk σ2
ε rather than by the conditional variance of price changes. When fundamental traders

are the only traders in the economy, this approximation is exact.
3The form of bounded rationality we have assumed for fundamental traders means that these traders

expect the price of the risky asset to revert to fundamental value within one period. This, in turn, means

that they trade aggressively against any mispricing—more aggressively than if they were fully rational. In

the latter case, they would recognize that extrapolator demand is persistent and trade more conservatively

against it, or even in the same direction as extrapolators (De Long et al. 1990, Brunnermeier and Nagel

2004).
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so that the demand of extrapolator i takes the form

wi

(
Dt − γσ2

ε(T − t − 1)Q − Pt

γσ2
ε

)
+ (1 − wi)

(
Xt

γσ2
ε

)
. (6)

Extrapolator i’s demand is now a weighted average of two components. The second compo-

nent is the expression we started with in (5), while the first component is the fundamental

trader demand from (3); wi is the weight on the first component. Our framework accommo-

dates any wi ∈ (0, 1], but we maintain wi < 0.5 for all i so that the extrapolative component

is weighted more heavily. In our numerical work, the value of wi is approximately 0.1. The

motivation for (6) is that even extrapolators worry about how the price of the risky asset

compares to its fundamental value. A high price relative to fundamental value exerts some

downward pressure on their demand, counteracting the extrapolative component.

In what follows, we refer to the two components of the demand function in (6) as “signals”:

the first component, the expression in (3), is a “value” signal; the second component, the

expression in (5), is a “growth” signal. These signals typically point in opposite directions.

If the price of the risky asset is well above fundamental value, it has usually also been rising

recently. The value signal then takes a large negative value, telling the investor to reduce

his position, while the growth signal takes a large positive value, telling the investor to

raise it. The signals can be informally interpreted in terms of “fear” and “greed”. If the

price has recently been rising, the value signal captures extrapolators’ fear that it might

fall back to fundamental value, while the growth signal captures greed, their excitement at

the prospect of more price rises. If the price has recently been falling, the growth signal

captures extrapolators’ fear of further price declines, and the value signal, their greed—their

excitement at the thought of prices rebounding toward fundamental value.4

Our second modification is to allow the weight wi to vary slightly over time, and in-

dependently so for each extrapolator type, so that the demand function for extrapolator i

becomes

wi,t

(
Dt − γσ2

ε(T − t − 1)Q − Pt

γσ2
ε

)
+ (1 − wi,t)

(
Xt

γσ2
ε

)
, (7)

where (7) differs from (6) only in the t subscript added to wi,t. Since the demand function in

4We use the term “growth signal” both for Xt/γσ2
ε and for Xt itself. When it is important to clarify

which of the two quantities is being referred to, we do so.
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(6) is based on two signals that often point in opposite directions, the investor is likely to be

unsure of what to do—and, in particular, unsure about how to weight the signals at any point

in time. As we model it, the weight an extrapolator puts on each signal shifts or “wavers”

over time, to a small extent. Fehr and Rangel (2011) and Towal, Mormann, and Koch (2013)

argue that individual decisions are shaped by computations in the brain, which are mediated

by the allocation of attention to various attributes of choice that is in part random. We can

think of wavering as resulting from such random allocation of extrapolators’ attention to

growth and value signals.

To model wavering, we set

wi,t = wi + ũi,t

ũi,t ∼ N(0, σ2
u), i.i.d. over time and across extrapolators. (8)

Here, wi ∈ (0, 1] is the average weight that extrapolator i puts on the value signal; in our

numerical analysis, we set wi = 0.1 for all extrapolator types. The actual weight that

extrapolator i puts on the value signal at time t is the mean weight wi plus Normally-

distributed noise. To ensure that wi,t stays in the (0, 1] interval, we truncate the distribution

of ũi,t.
5 Under our assumptions, the I types of extrapolator differ only in the weight wi,t

that they put on the value signal in each period. The values of the two signals themselves

are identical across extrapolators.

We also impose short-sale constraints, so that the final risky asset share demand of the

fundamental traders, NF
t , and of extrapolator i ∈ {1, 2, . . . , I}, NE,i

t , are given by

NF
t = max

[
Dt − γσ2

ε(T − t − 1)Q − Pt

γσ2
ε

, 0

]
(9)

and

NE,i
t = max

[
wi,t

(
Dt − γσ2

ε(T − t − 1)Q − Pt

γσ2
ε

)
+ (1 − wi,t)

(
Xt

γσ2
ε

)
, 0

]
. (10)

As we explain in Section 4, short-sale constraints are not needed for our most important

results. In contrast, the assumption that extrapolators waver slightly between a growth and

a value signal is crucial.

5Specifically, we truncate ũi,t at ±0.9 min(1 − wi,wi), a formulation that allows the fundamental trader

demand in (3) to be a special case of the more general demand function in (7) and (8), namely, the case

where wi = 1. The exact form of truncation is not important for our results.
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For tractability, we assume that all investors maximize the expected utility of next pe-

riod’s wealth. Barberis et al. (2015) study asset prices in an economy where extrapolators

and rational traders maximize lifetime consumption utility. While they do not address facts

about bubbles, their predictions for prices are qualitatively similar to ours, which suggests

that our assumption of myopic demand is innocuous. In the Online Appendix, we show that

our principal results also hold in a model with some rational fundamental traders.

In Proposition 1 in Section 9, we show that, in the economy described above, a market-

clearing price always exists and is given by

Pt = Dt +

∑
i∈I∗ μi(1 − wi,t)∑

i∈I∗ μiwi,t
Xt − γσ2

εQ
(
∑

i∈I∗ μiwi,t)(T − t − 1) + 1∑
i∈I∗ μiwi,t

, (11)

where μ0 and μi are the fraction of fundamental traders and of extrapolators of type i in

the population, respectively, so that
∑I

i=0 μi = 1, and where I∗ is the set of i ∈ {0, 1, . . . , I}
such that trader i has strictly positive demand for the risky asset at time t. The statement

of Proposition 1 explains how I∗ is determined at each time t.6

The first term on the right-hand side of (11) shows that the price of the risky asset is

anchored to the expected value of the final cash flow. The second term reflects the impact of

extrapolator demand: if past price changes have been high, so that Xt is high, extrapolator

demand at time t is high, exerting upward pressure on the price. The third term is a price

discount that compensates the holders of the risky asset for the risk they bear.

We define the “steady state” of our economy as the state to which the economy converges

after many periods in which the cash-flow shocks equal zero. It is straightforward to show

that, in this steady state: the fundamental traders and all the extrapolators are in the

market, with each trader holding the risky asset in proportion to his weight in the population;

the price of the risky asset equals the fundamental value in (4); the change in price from one

date to the next is constant and equal to γσ2
εQ; and the growth signal Xt, defined in (5), is

also equal to γσ2
εQ.

2.1 Parameter values

6Here and elsewhere, we index fundamental traders by the number “0”. If i = 0 is in the set I∗, the

expression in (11) requires the value of w0,t, in other words, the weight fundamental traders put on the value

signal. By definition, w0,t = 1.

10



In Sections 3 and 4, we explore the predictions of our model through both analytical

propositions and numerical analysis. We now discuss the parameter values that we use in

the numerical analysis. The asset-level parameters are D0, Q, σε, and T . The investor-level

parameters are I, μi and wi for i ∈ {0, 1, . . . , I}, γ, θ, and σu.

We begin with θ, which governs the weight extrapolators put on recent as opposed to

distant past price changes when forming beliefs about future price changes; as such, it

determines the magnitude of the growth signal Xt. In setting θ, we are guided by the survey

evidence analyzed by Greenwood and Shleifer (2014) on the beliefs of actual stock market

investors about future returns. If we assume that the time period in our model is a quarter,

the evidence and the calculations in Barberis et al. (2015) imply θ ≈ 0.9.7

We set μ0, the fraction of fundamental traders in the economy, to 0.3, so that fundamen-

tal traders make up 30% of the population, and extrapolators, 70%. The survey evidence

in Greenwood and Shleifer (2014) suggests that many investors in the economy are extrap-

olators. We have I = 50 types of extrapolators, where each type has the same population

weight, so that μi = (1 − μ0)/I, for i = 1, . . . , I. As discussed earlier, we set wi to the

same low value of 0.1 for all extrapolators i. And we set γ to 0.1. We do not have strong

priors about the value of σu, which controls the degree of wavering. We assign it a low

value—specifically, 0.03—so as to show that even a small degree of wavering can generate

interesting results. This value of σu implies that, about two-thirds of the time, the weight

wi,t extrapolator i puts on the value signal is in the interval (0.07, 0.13), a very small degree

of wavering relative to the base weight wi = 0.1.

We set the initial expected dividend D0 to 100, the standard deviation of cash-flow shocks

σε to 3, the risky asset supply Q to 1, and the number of dates T to 50. Since the interval

between dates is a quarter, this value of T means that the life span of the risky asset is 12.5

years.

3. Asset prices in a bubble

7Specifically, θ = exp(−(0.5)(0.25)) ≈ 0.9, where 0.5 is Barberis et al.’s (2015) estimate of the extrapo-

lation parameter in a continuous-time framework, and 0.25 corresponds to the one-quarter interval between

consecutive dates in our model.
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Our model can generate the most essential feature of a bubble, namely a large and

growing overvaluation of the risky asset, where, by overvaluation, we mean that the price

exceeds the fundamental value in (4). In our model, bubbles are initiated by a sequence of

large, positive cash-flow shocks, which here are news about the future liquidating dividend.

Figure 1 illustrates this. It uses the parameter values from Section 2 and equations (1), (4),

(5), and (11) to plot the price (solid line) and fundamental value (dashed line) of the risky

asset for a particular 50-period sequence of cash-flow shocks, in other words, for a particular

set of values of ε̃1, ε̃2,. . . , ε̃50. The first ten shocks, ε̃1 through ε̃10, are all equal to zero. These

are followed by four positive shocks, namely 2, 4, 6, and 6; these are substantial shocks: the

last two are two-standard deviation shocks. These are followed by 36 more shocks of zero.8

Once the positive shocks arrive, a large and sustained overpricing follows. The positive

cash-flow news pushes prices up, which leads the extrapolators to sharply increase their

share demand in subsequent periods; this, in turn, pushes prices well above fundamental

value. Over the four periods of positive cash-flow news, starting at date 11, the expected

final dividend increases by 18, the sum of 2, 4, 6, and 6. The figure shows, however, that

between dates 11 and 18 prices rise by more than double this amount. After the cash-flow

shocks drop back to zero at date 15, prices stop rising as rapidly; this, in turn, cuts off the

“fuel” driving extrapolator demand. These investors eventually start reducing their demand

and the bubble collapses.

This bubble has three distinct stages defined by the composition of the investor base. In

the first stage, the fundamental traders are still in the market: even though the risky asset

is overvalued, the overvaluation is sufficiently mild that the short-sale constraint does not

bind for the fundamental traders. In our example, this first stage spans just two dates, 11

and 12. Figure 1 shows that, during this stage, the overvaluation is small in magnitude:

precisely because the fundamental traders are present in the market, they absorb much of

the demand pressure from extrapolators by selling to them.

The second stage of the bubble begins when the risky asset becomes so overvalued that

8We set the growth signal at time 1, X1, equal to the steady-state value of X, namely γσ2
εQ = 0.9. This,

together with the fact that the first ten cash-flow shocks are equal to zero, means that the price of the risky

asset equals the asset’s fundamental value for the first ten periods.
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the fundamental traders exit the market. In our example, this occurs at date 13. During

this stage, extrapolators alone trade the risky asset, which becomes progressively more over-

valued: the high past price changes make the extrapolators increasingly enthusiastic, and

there is no countering force from fundamental traders. In the absence of cash-flow news,

however, the price increases eventually subside, extinguishing extrapolator enthusiasm and

causing the bubble to deflate.

To see how the bubble in Figure 1 bursts, note that, from price equation (11), the size of

the bubble depends on the magnitude of the growth signal Xt, itself a measure of extrapolator

enthusiasm. From equation (5), this signal evolves as

Xt+1 = θXt + (1 − θ)(Pt − Pt−1). (12)

The first term on the right-hand side, θXt, indicates that the bubble has a natural ten-

dency to deflate; recall that 0 < θ < 1. As time passes, the sharply positive price changes

that excited the extrapolators recede into the past; they are therefore downweighted, by

an amount θ, reducing extrapolator enthusiasm. However, if the most recent price change,

Pt − Pt−1, is sufficiently positive, both the growth signal and the bubble itself can maintain

their size. Once the good cash-flow news subsides—after date 14 in our example—it becomes

increasingly unlikely that the most recent price change is large enough to offset the bubble’s

tendency to deflate, in other words, that the second term on the right-hand side of (12)

will dominate the first. As a consequence, the price level starts falling, sharply reducing

extrapolator enthusiasm, and setting in motion the collapse of the bubble.9

The third stage of the bubble begins when the bubble has deflated to such an extent that

the fundamental traders re-enter the market. In our example, this occurs at date 23. In this

example, both the fundamental traders and the extrapolators are present in the market in

this stage. For other cash-flow sequences, the price declines during the collapse of the bubble

can be so severe as to cause the extrapolators to exit the market, leaving the asset in the

hands of the fundamental traders for some period of time.

Our prediction that, in the presence of extrapolators, a sequence of strongly positive

cash-flow news leads to a large overvaluation holds for a wide range of parameter values.

9The use of leverage can amplify the effects of extrapolation, leading to larger bubbles and more dramatic

collapses. See Simsek (2013) and Jin (2015) for analyses of this idea.
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Figure 2 illustrates this. The four graphs in the figure correspond to four important model

parameters: μ0, the fraction of fundamental traders in the population; w =
∑I

i=1 μiwi, the

weight extrapolators put on the value signal; θ; and σu. In each graph, the solid line plots

the maximum overvaluation of the risky asset across the 50 dates for the cash-flow sequence

used in Figure 1, where “overvaluation” means the difference between price and fundamental

value. The dashed line, which we discuss in Section 4, plots the volume of trading in the

risky asset on the date at which the maximum overvaluation is attained—informally, the

date at which the bubble peaks. For each graph, we generate the solid and dashed lines by

varying the value of the parameter on the horizontal axis while keeping all other parameter

values at the benchmark levels laid out in Section 2.

The figure confirms that our model generates a large overvaluation for a wide range of

parameter values. It also shows, quantitatively, how the degree of overvaluation varies as we

shift the parameter values. Not surprisingly, lower values of μ0 and w increase the magnitude

of overvaluation. More interestingly, lower values of θ generate bubbles that are larger in

size. To understand this, suppose that there is good cash-flow news at time t − 1 that

pushes up the asset price. When θ is low, extrapolators become much more bullish at time

t, precisely because they put a lot of weight on the most recent price change. This means

that Pt − Pt−1 is high, which, from (12), means that Xt+1 is high, and hence that Xt+2 is

also high. Since the growth signal X is a major determinant of bubble size, this explains

why a low θ generates a large bubble. However, the fact that Xt in equation (12) is scaled

by θ also means that, when θ is low, the bubble deflates faster after reaching its peak. A

low θ therefore generates bubbles that are more “intense”—they feature a high degree of

overvaluation but are short-lived.

Wavering does not play a significant role in the evolution of the price path in Figure 1.

If we replaced the extrapolators in our model with extrapolators who all put the same,

invariant weight of 0.1 on the value signal, we would obtain a price path almost identical to

that in Figure 1. The reason is that, for the particular sequence of cash-flow shocks used in

Figure 1, virtually all of the extrapolators are present in the market during all three stages

of the bubble. By the law of large numbers, the aggregate demand of I = 50 extrapolators

whose weight on the value signal equals 0.1 is approximately equal to the aggregate demand
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of I = 50 extrapolators whose weight on the value signal is drawn from a distribution with

mean 0.1. As a result, the pricing of the risky asset is very similar whether the extrapolators

are homogeneous or waver.

The reasoning in the previous paragraph explains why, in the bottom-right graph in

Figure 2, the degree of overvaluation remains unchanged as we increase the degree of wavering

from 0 to 0.03. However, the graph shows that, for high levels of wavering, an increase in

wavering does lead to a higher overvaluation. This is due to a novel bubble mechanism that

we call a “price spiral”. During the second stage of the bubble, when the fundamental traders

are out of the market, the asset can become so overvalued that even some extrapolators exit

the market—specifically, those who put the highest weight wi,t on the value signal. Once

these extrapolators leave the market, the asset is left in the hands of the more enthusiastic

extrapolators, who put more weight on the growth signal. This generates an even larger

overvaluation, causing yet more extrapolators to hit their short-sale constraints, and leaving

the asset in the hands of an even more enthusiastic group of extrapolators. Eventually,

in the absence of positive cash-flow shocks, the price increases become less dramatic and

extrapolator demand abates, causing the bubble to deflate. At this point, extrapolators who

had previously exited the market begin to re-enter.

Figure 3 depicts a price spiral. The parameter values are the same as for Figure 1, but we

now use the cash-flow sequence 2, 4, 6, 6, 12, 10 in place of 2, 4, 6, 6. The dashed line plots

the asset’s fundamental value, while the solid line plots its price. For comparison, the dash-

dot line plots the price in an economy where the extrapolators are homogeneous, placing

the same, invariant weight of 0.1 on the value signal. For this cash-flow sequence, wavering

significantly amplifies the degree of overpricing: the solid line rises well above the dash-dot

line. As explained above, this is due to some extrapolators exiting the market, starting at

date 15; at the peak of the price spiral around date 20, about half of the extrapolators are

out of the market.10

10The price spiral we have just described can also result from a type of heterogeneity that is simpler

than wavering, one where extrapolators differ in the weight they put on the value signal, but this weight

is constant over time, so that wi,s = wi,t for all s, t. While the stochasticity embedded in wavering is not

required for price spirals to occur, it is crucial for the volume predictions in Section 4.
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Price spirals typically deflate within a few periods. In some cases, however—specifically,

for sequences of very large, positive cash-flow shocks—the price spiral can lead to extremely

high prices that revert back only after many periods. We do not put much weight on this

prediction. First, the cash-flow shocks required for such out-of-control spirals are so large as

to be unlikely in reality. Second, factors absent from our model, such as equity issuance by

firms, are likely to prevent these extreme spirals from arising.

In Proposition 2 in Section 9, we show how the magnitude of the asset’s overvaluation

at time t can be expressed as a function of the cash-flow shocks that have been realized up

until that time. For example, suppose that the economy has been in its steady state up to

time l − 1 and that there is then a sequence of positive shocks εl, εl+1,. . ., εn that move

the economy from the first stage of the bubble to the second stage of the bubble at some

intermediate date j with l < j < n. Suppose also that the bubble remains in the second

stage through at least date N > n, and that all the extrapolators are in the market in the

second stage, so that there is no price spiral. The proposition shows that, in this case, the

overvaluation at time t in the second stage, j ≤ t ≤ N, is approximately equal to

t−1∑
m=j

L2(t − m)εm, (13)

where the coefficients L2(t−m) depend only on the model parameters and not on the values

of the shocks, and where the “2” subscript in L2(·) indicates that the coefficients are applied

to cash-flow news that arrives during the second stage of the bubble: the summation in (13)

starts at time j, when the second stage begins.11

The expression in (13) shows that the degree of overvaluation in the second stage has

a simple linear structure: it is approximately a weighted sum of the cash-flow news in the

second stage, where the weights are constant. For example, if there have been eight cash-

flow shocks during the second stage of the bubble, namely εt−8, εt−7, . . . , εt−1, then, for the

11The proposition presents analogous results for the first stage of the bubble and also for the second stage

in the case of a price spiral. For tractability, it assumes a continuum of extrapolators rather than a finite

number of them.
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parameter values we are using, the degree of overvaluation at time t is approximately

L2(1)εt−1 + L2(2)εt−2 + . . . + L2(7)εt−7 + L2(8)εt−8

= 0.9εt−1 + 1.62εt−2 + 2.11εt−3 + 2.33εt−4 + 2.3εt−5 + 2.05εt−6 + 1.61εt−7 + 1.06εt−8. (14)

This expression shows that the cash-flow news that contributes the most to time t overvaluation—

the shock with the largest coefficient—is the news from four periods earlier, εt−4. This news

causes a price increase at time t− 4, which increases extrapolator enthusiasm at time t− 3,

thereby causing a larger price increase at that time as well; this, in turn, increases extrapola-

tor enthusiasm at time t−2, and so on. Through its accumulated effect on prices over several

periods, the cash-flow news εt−4 has a large impact on time t overvaluation. By contrast, the

most recent cash-flow news, εt−1, has a smaller effect on time t overvaluation: much of its

impact will come after time t. The more distant cash-flow news εt−8 also has a small effect

on time t overvaluation. While that shock contributed to price increases at time t − 8 and

on a few subsequent dates, those price increases are now so far in the past that they have

little impact on extrapolator beliefs at time t.

Proposition 2 shows that the coefficients on the lagged cash-flow shocks depend on just

two parameters: θ, which governs the relative weight extrapolators put on recent as opposed

to distant past price changes when forming beliefs; and w, the mean weight that extrapolators

put on the value signal. In the example above, the cash-flow news that receives the most

weight is the fourth lagged shock εt−4. As we vary θ and w, we find that it is either the

second, third, fourth, or fifth lagged shock that receives the most weight. If we lower one of θ

or w while keeping the other parameter fixed, it is a more distant lagged shock that receives

the most weight—the fourth lagged shock, say, as opposed to the second lagged shock.

For the purpose of understanding the behavior of bubbles, it is useful to look at how the

magnitude of the largest coefficient depends on θ and w, and on how fast the coefficients

decline, the further back we go into the past. If we lower one of θ or w while keeping the

other parameter fixed, the magnitude of the largest coefficient goes up but the coefficients

also decline faster after reaching their peak, the further back we go in time. This is consistent

with a result we discussed earlier: for lower values of θ, our model generates bubbles that are

larger, in that they feature a higher maximum overvaluation, but that are also shorter-lived.
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The expression in (14) helps us understand what kinds of cash-flow sequences generate

the largest bubbles. More concretely, which sequence {εt−8, . . . , εt−1} generates the largest

overvaluation at time t? To generate a large bubble at time t, we want to associate the

highest value of ε with the highest value of L2(·), namely 2.33; the second highest value of

ε with the second highest value of L2(·), namely 2.3, and so on. Since the highest values of

the L2(·) coefficients are for lags that are temporally close—specifically, for lags 3, 4, 5, and

6—this means that the largest bubbles occur when the biggest cash-flow shocks are clumped

together in time. More generally, since, for the first few lags, the L2(·) coefficients rise to

a peak and then decline, the largest bubble is created by a sequence of cash-flow news that

itself rises to a peak and then declines. For example, if εt−8 through εt−1 take the values

1, 2, 3, 4, 5, 6, 7, 8, in some order, the above discussion suggests that the largest time t

overvaluation is generated by the ordering 2, 3, 5, 7, 8, 6, 4, 1—and this is indeed the case.

To compute the frequency of large bubbles in our model, we use the cash-flow process in

(1) and the price process in (11) to simulate a T = 40, 000-period price sequence and record

the number of bubbles for which the level of overvaluation—the bubble’s “size”—exceeds a

threshold such as 10 or 20, and also the length of time for which this threshold is exceeded. To

put these bubble sizes in context, recall that, in non-bubble times, a one-standard deviation

cash-flow shock increases the asset’s price by approximately 3.

In our model, bubbles are rare. For our benchmark parameter values, a bubble whose size

exceeds 10 occurs once every 17 years, on average, with the overvaluation exceeding 10 for

approximately one year. A bubble of size 20 occurs just once every 50 years, on average, and

maintains this size for approximately three quarters. Bubbles are rare for two reasons. First,

for a bubble to occur, the cash-flow shocks need to be large enough to cause the fundamental

traders to exit. Second, for a large bubble to form, the cash-flow shocks need to be both

large and clumped together in time. The probability of this happening is low. Our earlier

discussion suggests that large bubbles arise more frequently for lower values of μ0 and w,

and, more interestingly, for lower values of θ. Our simulations confirm this.

To conclude our analysis of prices, we verify, again through simulations, that our model

also captures the basic asset pricing patterns that the previous generation of extrapolation

models was designed to explain. Specifically, we confirm that our model generates excess
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volatility (the standard deviation of price changes exceeds the standard deviation of changes

in fundamental value); predictability (the difference between the dividend and the price at

time t, Dt−Pt, predicts the change in price over the next 12 periods, Pt+12−Pt); and positive

(negative) autocorrelations in price changes at short (long) lags. It is not surprising that

our framework can explain these facts: while we modify the earlier extrapolation models in

qualitatively significant ways, these modifications are quantitatively small.

4. Volume in a bubble

Bubbles feature very high trading volume (Ofek and Richardson 2003, Hong and Stein

2007). A central goal of our paper is to propose a way to understand this fact.12

Figure 4 plots the share demand NF
t of the fundamental traders (dashed line) and the

share demands NE,i
t of the I types of extrapolator (solid lines) for the same 50-period cash-

flow sequence that we used in Figure 1, namely 10 shocks of zero, followed by four positive

shocks of 2, 4, 6, and 6, followed by 36 more shocks of zero. Recall from Figure 1 that this

sequence of cash-flow shocks generates a large bubble between dates 15 and 21.

Figure 4 shows that, during the bubble, share demands of extrapolators become very

volatile, suggesting a large increase in volume. Figure 5 confirms this. The solid line in

this figure plots total trading volume at each of the 50 dates and shows a dramatic increase

in volume between dates 12 and 25. As Figure 5 shows, our model predicts three “peaks”

in volume which correspond to the three bubble stages outlined in Section 3: a small peak

centered around date 13 in the first stage, a much wider peak centered around date 17 in

the second stage, and a thin but tall peak centered around date 23 in the third stage. Total

volume at each date is the sum of two components: trading that takes place within the set

of I extrapolators, and trading that takes place between the extrapolators in aggregate and

fundamental traders. The dashed line in Figure 5 plots the first component—trading volume

within the set of I extrapolators.

12A small fraction of bubbles, often those associated with debt securities, do not exhibit very high trading

volume. Hong and Sraer (2013) explain this by noting that, if investors are over-optimistic about the value

of the asset underlying a debt security and also differ in how optimistic they are, they overvalue the debt

security but do not disagree about its value—its value does not depend on beliefs about good states of the

world. Trading in the debt security is therefore muted.

19



The first peak in Figure 5 centered around date 13 arises during the first stage of the

bubble and reflects trading between the extrapolators in aggregate and fundamental traders.

Arrival of the good cash-flow news pushes prices up, which, in turn, leads extrapolators to

buy and fundamental traders to sell the asset. Before long, however, all the fundamental

traders are out of the market and this first wave of trading subsides.

During the second stage, the bubble keeps growing and trading volume rises again, as

indicated by the wide second peak centered around date 17 in Figure 5. In this stage, all of the

trading takes place among the I extrapolators. This potentially large volume generated by

our model is due to wavering. It is not surprising that, in general, wavering leads to trading

volume. What is more interesting is that, even though the degree of wavering remains fixed

over time—the value of σu in equation (8) is constant—the model endogenously generates

much greater volume during bubble periods than non-bubble periods.

To understand this, we write the share demand of extrapolator i in equation (10) more

simply as wi,tVt + (1−wi,t)Gt, where Vt and Gt = Xt/γσ2
ε are the value and growth signals,

respectively, at time t. We ignore the short-sale constraint because it is not important for the

intuition. A unit change in the weight wi,t on the value signal changes the extrapolator’s share

demand by Vt−Gt. In “normal” times, when the cash-flow shocks are neither abnormally high

nor abnormally low, the value and growth signals are both small in absolute magnitude: since

the risky asset is neither particularly overvalued nor undervalued, the value signal Vt is close

to zero in absolute magnitude; and since prices have not been rising or falling particularly

sharply in recent periods, the growth signal Gt is also close to zero in absolute magnitude.

In this case, Vt − Gt is itself low in absolute magnitude, implying that, in normal times,

wavering does not induce much variation in extrapolator demand.13

During a bubble, the situation is very different. At that time, the value signal Vt is large

and negative (the asset is highly overvalued), and the growth signal is large and positive (the

asset’s price has been rising sharply in recent periods). As a result, Vt − Gt is very large

in absolute value, and the same degree of wavering that generates low trading volume in

13If the growth signal Gt rises in value, this increases the aggregate demand for the risky asset. To

counteract this increase and thus ensure that the market clears, the value signal Vt must decline. The two

signals are therefore related: the more positive one of them is, the more negative the other must be.
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normal times now generates very high trading volume. This is the mechanism behind the

high trading volume represented by the wide peak centered around date 17 in Figure 5.

To put this more simply, during the bubble, the extrapolators holding the risky asset

are subject to two powerful but conflicting investment signals. On the one hand, they

see that prices are far above fundamental value; this makes them fearful of a crash and

encourages them to sell. On the other hand, prices have recently been rising sharply, which

makes extrapolators expect continued price appreciation and encourages them to buy. These

two signals are so strong that even small shifts in their relative weights lead to large—and

independent across traders—portfolio adjustments, and hence trading volume.

Once the bubble starts collapsing, the second wave of trading volume begins to subside:

as the bubble deflates, both the value and growth signals decline in absolute magnitude; the

quantity Vt − Gt then also declines in absolute magnitude, and the impact of wavering on

extrapolator share demands is reduced. Figure 5 shows that once the bubble’s collapse is

well under way, there is a third wave of trading, represented by the thin third peak centered

around date 23, between the selling extrapolators and the fundamental traders who re-enter

the market. The third peak is taller than the first peak. The reason is that the first peak

consists of extrapolators shifting from moderate holdings of the risky asset to large holdings

of the asset. The third peak consists of extrapolators shifting from large holdings of the

risky asset to low holdings of the asset as they extrapolate price declines into the future and

sell. This third volume peak thus represents more intense trading than the first one.

The central message in the discussion above is that a fixed amount of wavering can

endogenously generate much higher trading volume during bubble periods. Proposition 3

below formalizes this idea in the following way. The change in extrapolator i’s share demand

between time t and time t + 1 has two components. The first is unrelated to wavering; it is

present even if wi,t+1 = wi,t. Specifically, in the first stage of the bubble, the extrapolator

buys from fundamental traders as the bubble grows, even in the absence of wavering; and

as the bubble grows further in its second stage, he buys from less bullish extrapolators if he

has a relatively low value of wi or sells to more bullish extrapolators if his wi is relatively

high—again, even in the absence of wavering.

The second component of the change in the extrapolator’s share demand between time
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t and time t + 1 is driven by wavering: it reflects his buying at time t + 1 during the

bubble if wi,t+1 shifts down at that time, or his selling if it shifts up. We sum the absolute

value of this second component across all extrapolators and label the sum “wavering-induced

trading volume,” V W (Xt), a quantity that depends on Xt. Proposition 3 shows that V W (Xt)

is typically increasing in Xt, a measure of bubble size. This is the formal sense in which

wavering leads to more trading volume as the bubble grows.

Proposition 3. Suppose that there is a continuum of extrapolators and that each extrapolator

draws an independent weight wi,t at time t from a bounded and continuous density function

g(w), w ∈ [wl, wh], with mean w and with 0 < wl < wh < 1. The sensitivity of per-capita

wavering-induced trading volume V W (Xt) to the growth signal Xt, denoted by ∂V W (Xt)/∂Xt,

is given by

∂V W (Xt)

∂Xt

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sign(Xt − γσ2

εQ)Δ0

(μ0 + (1 − μ0)w)γσ2
ε

− wlγσ2
εQ

μ0(1 − wl) + (1 − μ0)(w − wl)
≤ Xt <

γσ2
εQ

(1 − μ0)(1 − w)

Δ0

wγσ2
ε

γσ2
εQ

(1 − μ0)(1 − w)
≤ Xt ≤ whγσ2

εQ

(wh − w)(1 − μ0)

,

(15)

where

Δ0 ≡
∫ wh

wl

g(w1)dw1

∫ wh

wl

|w1 − w2|g(w2)dw2. (16)

If Xt > whγσ2
εQ/[(wh − w)(1 − μ0)], ∂V W (Xt)/∂Xt may become smaller and even turn

negative as extrapolators exit the market.

The key part of Proposition 3 is the second row of (15). It says that, in the less extreme

part of the second stage of the bubble, when all extrapolators are in the market, wavering

induces more trading volume, the larger the size of the bubble: Δ0 is a positive quantity.

The same is true during the first stage of the bubble—see the first row of (15)—although the

relationship is weaker; moreover, wavering-induced volume is here a relatively small part of

overall trading volume. If, during its second stage, the bubble becomes so large that even

some extrapolators exit the market, then wavering-induced volume increases more slowly

as a function of Xt, and can even decrease, simply because there are fewer extrapolators

available to trade.

The dashed lines in the four graphs in Figure 2 show quantitatively how the level of
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trading volume at the peak of the bubble depends on four key model parameters: μ0, w̄,

θ, and σu. Lower values of μ0, w̄, and θ lead to significantly higher volume. When these

parameters have low values, the degree of overvaluation is higher; this means that the value

and growth signals are larger in absolute magnitude, and this in turn interacts with wavering

to generate more volume. As expected, higher values of σu lead to higher volume. Indeed,

increasing σu leads to higher volume even if, as is the case for low values of σu, the degree

of overvaluation remains unchanged.

Proposition 3 indicates that, during the bubble, wavering-induced volume is typically

increasing in Xt. Since Xt is an average of past price changes, this suggests the following

testable prediction: during a bubble, volume is positively related to the asset’s past return.

To verify that this is a prediction of our model, we simulate a 40,000-period price sequence

from the model and extract three subsamples—the subsample where the asset price differs

from fundamental value by less than γσ2
εQ = 0.9; the subsample where the asset is overvalued

by at least γσ2
εQ = 0.9; and the subsample where it is overvalued by at least 10γσ2

εQ = 9.14

We find that in these three subsamples, the correlation between volume at time t+1 and the

price change between t − 4 and t, a year-long interval, is -0.22, 0.41, and 0.6, respectively.

These monotonically increasing correlations confirm that, in our model, the relationship

between trading volume and past return is stronger during bubble episodes. In Section 7.1,

we test this prediction for four historical bubbles.

We conclude our discussion of trading volume with two points. First, alternative sources

of heterogeneity among extrapolators—sources other than wavering—do not generate nearly

as much trading volume during the bubble period. Specifically, if we turn off wavering by

setting σu in (8) to 0 and instead allow the base weights wi and the weighting parameter θ

to differ across extrapolators, we no longer obtain a large second volume peak like the one

in Figure 5. The reason is that, after a sequence of price increases, extrapolators who do

not exhibit wavering would almost all like to increase their holdings of the risky asset, even

if they differ in their values of wi and θ: regardless of the specific values of wi and θ, a high

growth signal means that most extrapolators find the risky asset more attractive. Since most

14The quantity γσ2
εQ is the degree of overvaluation that causes fundamental traders to exit the market;

it is therefore a natural “unit” of overvaluation.
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extrapolators want to trade in the same direction, there is relatively little trading between

them: prices, not quantities, adjust. In our model, the specific type of heterogeneity induced

by wavering is uniquely able to generate heavy trading.15

Second, our predictions about prices and volume depend primarily on the presence of

extrapolators who waver between two signals; the short-sale constraint is not nearly as im-

portant. We incorporate the short-sale constraint into our model because the fundamental

traders are boundedly rational. These traders do not attempt to forecast extrapolator de-

mand, but instead simply assume that any mispricing will correct by the next date. As a

consequence, they trade aggressively against the extrapolators, and this reduces the mispric-

ing. To generate a substantial overvaluation, we need a short-sale constraint: this forces the

fundamental traders out as the bubble starts to form, allowing the bubble to grow.

In an Online Appendix, we show that in a model with fully rational traders we can dis-

pense with the short-sale constraint without substantially affecting our predictions. Specifi-

cally, we analyze a model in which extrapolators have the demand function in (7) and (8) and

where we replace the fundamental traders with fully rational traders who are able to forecast

future extrapolator demand. Moreover, all investors can short. This model makes predic-

tions about bubbles that are similar to those of the model in Section 2. First, a sequence

of strongly positive cash-flow news leads to a large overvaluation. Since the rational traders

can forecast extrapolator demand, they recognize that, when extrapolators are bullish, they

are likely to remain bullish for a while, and it does not pay to trade aggressively against

them. This, in turn, allows a large overvaluation to build up. Second, there is again high

trading volume during the bubble. Since all investors can short, some of the trading volume,

even at the height of the bubble, is between extrapolators and rational traders—but a lot of

15In many bubble episodes, including two that we study in Section 7, the peak in volume coincides with

the peak in prices. This is the pattern predicted by our model so long as the degree of wavering, governed

by σu, is not too low. In the technology bubble of the late 1990s, the peak in volume precedes the peak in

prices (Hong and Stein 2007). While we do not have a full theory of this phenomenon, even here, wavering is

helpful for understanding the evidence. Although volume at the price peak is lower than it was a few months

earlier, it is still extremely high. In our model of extrapolators and fundamental traders, only wavering can

generate such intense trading.
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it is between wavering extrapolators.16

In the model in the Online Appendix, the rational traders maximize the expected utility

of next period’s wealth. We expect that the results will be similar if these traders instead

maximize the expected utility of time T wealth, so long as they adjust their portfolios in

a dynamically optimal way at each date. Indeed, Barberis et al. (2015) show that, when

rational, dynamically-optimizing traders with long horizons interact with extrapolators, there

can be a substantial overvaluation even without a short-sale constraint. The reason is that,

when the risky asset is overvalued, rational traders recognize that extrapolators are likely

to remain optimistic for a while longer, and therefore that they can improve their long-run

wealth prospects by not attacking the mispricing too aggressively.

We focus on the model of Section 2 with boundedly-rational traders and short-sale con-

straints because it captures our main ideas in a much simpler way than do models with fully

rational traders. Another advantage of the Section 2 model is that it makes more realistic

predictions about downturns. We discuss these predictions in the next section.

5. Negative bubbles

The behavior of prices and volume after a sequence of negative cash-flow shocks are not

the “mirror image” of those for the case of positive cash-flow shocks. First, our model does

not generate “negative” bubbles: while the price of the risky asset falls when bad cash-flow

news arrives, it does not fall much below fundamental value. After disappointing cash-flow

news push the price of the risky asset down several periods in a row, the extrapolators would,

in principle, like to short the risky asset. If they could short, they would cause the risky

asset to become undervalued. However, since they are subject to a short-sale constraint,

they stay out of the market, and there is no significant undervaluation. Still, there is some.

In bad times, the risky asset is held only by fundamental traders. To hold the entire market

16We have also studied a model where we keep the boundedly rational traders, but add a third group of

fully rational traders to the economy. This model preserves the same essential predictions as the model in

Section 2: the asset becomes overvalued after a sequence of good cash-flow news and a large percentage of

volume during the bubble is due to trading among extrapolators. But consistent with De Long et al. (1990),

Brunnermeier and Nagel (2004), and others, it also captures the idea that rational traders ride the bubble:

they buy the asset after good cash-flow news in the expectation of selling to extrapolators at a later date.
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supply, these traders need the price to be lower than fundamental value, namely

Dt − γσ2
ε(T − t − 1)Q − γσ2

ε

μ0
Q,

which differs from the fundamental value in (4) by γσ2
εQ(1 − μ0)/μ0. For our parameter

values, this wedge is approximately $2.17

Our model predicts heavy trading during bubbles, but little trading during severe down-

turns. When bad cash-flow news arrives, there is some trading as extrapolators sell to

fundamental traders. Once the extrapolators leave the market, however, the asset is held

only by fundamental traders, a homogeneous group. There is no more trading until the

market recovers and extrapolators re-enter. More broadly, our model predicts much higher

trading volume during bull than bear markets, a prediction consistent with the available

evidence (Statman, Thorley, and Vorkink 2006, Griffin, Nardari, and Stulz 2007).18

6. Comparison with other bubble models

It is impossible to do justice here to all the important contributions in the literature on

bubbles, recently surveyed by Brunnermeier and Oehmke (2013) and Xiong (2013). Instead,

we focus on two classes of models—rational bubble models and disagreement-based models.

The former are notable for their simplicity and long tradition; the latter, like us, deal with

volume.

6.1. Rational bubble models

In models of rational bubbles, the price of a risky asset is given by

Pt = PD,t + Bt, (17)

where PD,t is the present value of the asset’s future cash flows and where Bt, the bubble

17For comparison, recall that a one-standard deviation cash-flow shock moves the risky asset price by

approximately $3.
18This prediction holds even if fundamental traders waver—for example, even if they have the demand

function in (7) and (8) with a base weight w0 = 0.9. Since the asset does not become very undervalued in

a downturn, the growth and value signals remain low in absolute magnitude. As a consequence, wavering

induces little trading volume.
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component, satisfies

Bt =
E(Bt+1)

1 + r
, (18)

where r is the expected return. We note four points.

First, the rational bubble model does not explain how a bubble gets started in the first

place. Under limited liability, the value of B must always be non-negative. But if B is strictly

positive in any future state of the world, then, from (18), it must be positive at the current

time. Put simply, if a bubble exists, it must always have existed. In our framework, in

contrast, bubbles are initiated in a much clearer way, as a consequence of what Kindleberger

(1978) calls “displacement”: a sequence of good cash-flow news leads to price increases which,

in turn, cause extrapolators to raise their demand for the risky asset.

Second, the rational bubble model has nothing to say about trading volume. In its usual

form, agents are assumed to be homogeneous; trading volume is therefore zero.

Third, the rational bubble model does not capture the extrapolative expectations that are

often observed during bubbles. In the basic version of this framework, the return investors

expect to earn on the risky asset is constant over time.

Finally, direct tests of the key prediction of rational bubble models—that payoffs in the

infinite future have positive present value—reject it (Giglio, Maggiori, and Stroebel 2015).

6.2. Disagreement-based models

Building on Harrison and Kreps (1978), Scheinkman and Xiong (2003) present a model in

which two risk-neutral investors observe two signals about the fundamental value of a risky

asset, but disagree about how useful each signal is. Their disagreement leads to trading

volume. With short-sale constraints, disagreement also leads to overpricing: the price of the

risky asset can be higher than the present value of its future cash flows, as perceived by the

investor holding the asset. The reason is that the holder of the asset believes that, as more

signals and cash-flow news are revealed over time, the other investor will eventually become

more optimistic than he is, allowing him to sell the asset on at an attractive price.

Both in Scheinkman and Xiong (2003) and in our model, the increase in volume during

a bubble is due to an increase in disagreement among investors. In Scheinkman and Xiong

(2003), this increase in disagreement is exogenous. In our model, disagreement grows en-

27



dogenously over the course of the bubble. As the bubble increases in size, the growth and

value signals in equation (10) become very large in absolute magnitude. Extrapolators who,

as a consequence of wavering, differ even very slightly in the relative weight they put on the

two signals disagree sharply about the expected price change on the risky asset and therefore

trade in large quantities. Whereas in Scheinkman and Xiong (2003) an exogeneous increase

in disagreement leads to both higher volume and overpricing, in our model, the causation is

different: overpricing leads to endogenously higher disagreement and hence higher volume.

Our model differs from disagreement models in other important ways. In our model, many

investors hold expectations that depend positively on past returns, consistent with survey

evidence on the expectations of actual investors. In Scheinkman and Xiong (2003), however,

the holder of the asset has constant expectations about the asset’s future return. Our

framework also predicts a positive correlation between volume and past returns during bubble

episodes, a prediction that we confirm empirically in the next section. Using simulations, we

find that, in Scheinkman and Xiong (2003), this correlation is close to zero: the exogeneous

process that governs disagreement and hence volume is uncorrelated with the process for

fundamentals that is the main determinant of price movements.

7. Some evidence

We present empirical evidence bearing on some distinctive predictions of the model. One

prediction, outlined in Section 4, is that the correlation between the trading volume in an

asset and its return over the previous year is higher during a bubble episode than at other

times. In Section 7.1, we examine this prediction for four historical bubbles. In Section 7.2,

we evaluate another central prediction of our model: as a bubble develops, a growing fraction

of trading volume is due to investors with extrapolator-like characteristics. In Section 7.3,

we look to see if these investors also exhibit evidence of wavering.

7.1. Volume and past returns

For four bubble episodes—the U.S. stock market in 1929, technology stocks in 1998-2000,

U.S. housing in 2004-2006, and commodities in 2007-2008—we check whether, as predicted

by our model, the correlation between volume and past return for the asset in question is
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higher during the bubble period than during the two-year period that follows the bubble’s

collapse.

U.S. stock market bubble of 1929

Accounts of the stock market boom of the late 1920s suggest that the bubble began

in March 1928 (Allen 1931, Galbraith 1954, White 1990). White (1990) shows that new

industries, especially utilities, led the stock market boom. Returns in these new-industry

stocks far outpaced returns of stocks in older industries such as railroads. Panel A of Figure

6 confirms White’s account. It compares the value-weighted cumulative return of public

utilities listed in CRSP (SIC codes 4900-4990) with the cumulative return of the broader

stock market. Utilities outperformed the broader stock market by more than 80% in the

March 1928 - September 1929 period.19

If we accept that utility stocks experienced a bubble in 1928-1929, our model predicts

that trading volume in these stocks during this time will be positively related to their past

return. Panel B of Figure 6 plots the value-weighted monthly turnover of utility stocks

over this period alongside their value-weighted 12-month past return; turnover is defined as

volume divided by shares outstanding. After a spike in April 1928, the turnover of utility

stocks closely tracks their 12-month past return. For example, the second highest volume

month in the series occurs in June 1929, following a 12-month cumulative return of 86%.

From January 1927 to December 1930, the correlation between turnover and the 12-month

past return is 0.59. Over the two-year period after the bubble ends—from January 1931 to

December 1932—the correlation is -0.03.

Technology stock bubble of 1998-2000

The explosion of volume during the technology bubble of 1998-2000 is well-known (Ofek

19Wigmore (1985, p.42) describes the market for these stocks: “There is no gainsaying the enthusiasm of

the financial markets for these public utility holding companies, however. [. . .] Their trading volume in 1929

exceeded 100% of their outstanding shares. At the high point in the market, their stocks averaged prices

57 times earnings per share, with Electric Bond and Share, which was most prominent because of its size

and its relationship with General Electric, selling at 96 times earnings per share.” Following the collapse

of the bubble, utilities were “held up by Franklin Roosevelt and others as spectacles of financial abuse and

confusion.”
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and Richardson 2003, Hong and Stein 2007). In Panels C and D of Figure 6, we replicate

and extend these findings. Panel C plots value-weighted monthly cumulative returns for

the sample of .com stocks used by Ofek and Richardson (2003) and compares them to the

cumulative returns of the CRSP value-weighted stock market index; returns for .com stocks

are from CRSP. Technology stocks began their climb in December 1997 with a 12% value-

weighted return. After a flat month in January 1998, they climbed another 23% in February,

another 13% in March, and another 13% in April. Panel D shows that turnover increases

steadily as the bubble progresses. Turnover (measured as before, and value-weighted) peaks

in April 1999, the same point at which technology stocks reach their highest 12-month return

of 429%. Overall, the figure shows that turnover closely tracks the past 12-month return,

with a time-series correlation of 0.73 between January 1998 and December 2002. In the

24-month post-bubble period from January 2003 to December 2004, the correlation is -0.14.

U.S. housing bubble of 2004-2006

The relationship between turnover and past returns also appears during the U.S. housing

bubble of the mid-2000s. In Panel E of Figure 6, we plot the Case-Shiller 20-City Composite

Home Price Index. This index, based on repeat transactions, seeks to measure the value of

residential real estate in the 20 largest U.S. metropolitan areas.

The Case-Shiller Index rises from a base value of 100 in January 2000 to a peak of 206.61

in April 2006. In Panel F, we show the relationship between 12-month past returns and

volume for the U.S. housing market; we use existing-home sales by month as a measure of

volume.20 The figure shows that, as for the two stock market bubbles, volume closely tracks

the 12-month past return; the time-series correlation in monthly data from January 2003

to December 2008 is 0.96. This is higher than the correlation in the two-year post-bubble

period from January 2009 to December 2010, namely 0.2.

Commodity bubble of 2007-2008

Whether the run-up in commodity prices in 2007 and 2008 can be easily explained by

fundamentals or was instead a bubble is subject to debate, with some authors suggesting that

20Existing-home sales are based on closing transactions of single-family homes, townhomes, condominiums,

and cooperative homes and are provided by the National Association of Realtors.
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the “financialization” of derivatives markets instigated demand from institutional investors

(Irwin and Sanders 2010, Cheng and Xiong 2014, Hong, de Paula, and Singh 2015). Panel G

of Figure 6 shows the run-up in oil prices as reflected in the share price of USO, the largest

exchange-traded fund with exposure to oil. USO more than doubled between December

2006 and June 2008. In Panel H of Figure 6, we plot the monthly turnover and 12-month

past return of this ETF, both obtained from CRSP. As in our other examples, the turnover

of USO closely tracks the past return; the time-series correlation between April 2007 and

December 2009 is 0.83. During the two-year post-bubble period, the correlation is 0.15.

7.2. The source of trading volume in a bubble

Another prediction of our model is that, during a bubble, a larger fraction of trading

volume will be due to extrapolative investors. We test this prediction for the technology

stock bubble of the late 1990s.

We do not have data on the trading of all investors during this period, but we do have

data on the trading of mutual funds. We therefore test whether, as the bubble develops, a

larger fraction of trading volume is due to extrapolator-like mutual funds. We again identify

.com stocks using the list of securities provided by Ofek and Richardson (2003) and then

match this list to quarterly mutual fund holdings from the Thomson Spectrum database.

For technology stock i in quarter t, we compute a measure of extrapolator-weighted trading

volume, namely

Volume Momi,t =

∑
j Buysi,j,tFundmomj,t−2 +

∑
j Sellsi,j,tFundmomj,t−2∑

j Buysi,j,t +
∑

j Sellsi,j,t
, (19)

where j indexes the mutual funds trading stock i in quarter t, so that Buysi,j,t and Sellsi,j,t

are the dollar buys and sells, respectively, of stock i by fund j in quarter t. In expression (19),

the Buys and Sells in the numerator are weighted by the extent to which they were executed

by extrapolator-like mutual funds. To determine how extrapolator-like fund j is, we look at

its holdings six months prior to quarter t—in other words, in quarter t − 2—and compute

the “growthiness” of these holdings. Specifically, at time t − 2, we sort all stocks—not only

.com stocks—into NYSE deciles according to their past 12-month return. The growthiness

of the fund’s portfolio at time t−2, Fundmomj,t−2, is then measured as the position-weighted
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past-return decile of the stocks in the portfolio:

Fundmomj,t−2 =
∑

i

wi,j,t−2 stockmomi,t−2, (20)

where stockmom takes an integer value between 1 and 10. A portfolio with a Fundmom score

of 1, for example, contains only stocks that performed poorly over the trailing 12 months,

while a portfolio with a score of 10 contains only stocks with high past returns.

In summary, Volume Momi,t measures the extent to which a dollar of trading volume in

stock i in quarter t is associated with extrapolative investors. When it takes a high value,

the stock is being bought and sold primarily by extrapolators; when it takes a low value,

contrarian investors play a larger role in the trading.

For each quarter t, we compute an equal-weighted average of Volume Momi,t across all

technology stocks at that date. Figure 7 plots the resulting time series between 1997 and

2002. The figure shows that, even at the beginning of the bubble in 1997 and early 1998, there

is substantial trading by extrapolative investors. As prices rise in 1998 and 1999, volume

becomes increasingly dominated by extrapolators. Then, as the bubble collapses in 2000 and

2001, the average Volume Mom drops substantially, from a peak of 8.45 in December 1999 to

5.75 in December 2001. Overall, the figure provides support for our prediction that, as the

bubble grows, a larger fraction of volume is due to trading by investors with extrapolator-like

characteristics.

7.3. Evidence of wavering

In the previous section, we saw that, as the technology stock bubble grew, a larger fraction

of trading volume was due to extrapolative mutual funds. We now show that these funds

also exhibited signs of wavering.

To provide evidence of wavering, we look at fund -level holdings: if, as our model assumes,

wavering is independent across funds, it will be undetectable in aggregate mutual fund

holdings. For each mutual fund in our sample, we compute its maximum dollar exposure

to the internet sector between 1996 and 2000, and focus on the ten funds with the highest

maximum exposure. For each of these ten funds, we measure the active changes in its

exposure to the internet sector during the bubble period. Specifically, for each of the fund’s
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positions in each quarter, we compute the change in the value of the position due to trading

as a percentage of the total value of the fund’s long positions that quarter; we denote this

by Δw. For a newly-established position, Δw is simply the value of the position scaled by

the total value of all long positions. For positions already held at the end of quarter t − 1,

Δw at time t is the change in shares held at time t multiplied by the time t price, again

scaled by the total value of all long positions. We sum Δw up over all internet stocks held

by the fund, with positive values indicating an active increase in exposure to these stocks

and negative values an active decrease in exposure. As before, we identify internet stocks

using the Ofek and Richardson (2003) list.

The top chart in Figure 8 shows the time series of Δw for the ten funds. Several of the

funds exhibit trading behavior that is consistent with wavering: as the bubble forms, they

display substantial shifts in their enthusiasm for the internet sector. Moreover, and also

consistent with our model, the wavering appears largely uncorrelated across funds: their

enthusiasm waxes and wanes at different times.

We conduct an analogous exercise for hedge funds. Specifically, we take the five hedge

funds in the Brunnermeier and Nagel (2004) sample with the highest maximum dollar expo-

sure to the internet sector between 1996 and 2000. For each of the five funds, we compute

the time series of Δw. The lower chart in Figure 8 presents the results. Zweig Di Menna’s

trading behavior is best described as extrapolation with little wavering. However, Tudor ex-

hibits behavior that is more consistent with wavering: it moves in, out, and back into bubble

stocks as the bubble grows. Nicholas Applegate, Husic, and Soros’ trading is similar to Tu-

dor’s: their enthusiasm for the internet sector also fluctuates substantially over time, albeit

less dramatically. While hedge fund behavior varies across funds, the standard deviation

of Δw during the 1998 - March 2000 bubble period, a rough measure of wavering-induced

trading, greatly exceeds the standard deviation of this quantity both before and after the

bubble period.

Other models may also be able to explain investors’ alternately increasing and decreasing

their exposure to an overvalued asset. Abreu and Brunnermeier (2003) present a model in

which one hedge fund after another becomes aware that an asset is overpriced. Each fund

is unsure how many other funds know about the overpricing, and this creates a dilemma: if
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relatively few other funds know about the mispricing, then it is better for the fund to ride

the bubble because there is unlikely to be enough selling pressure to burst it. However, if

many other funds are aware of the bubble, it is better for the fund to sell in order to avoid

a crash caused by other funds exiting.

In the basic version of the Abreu and Brunnermeier (2003) model, there is nothing that

resembles wavering: each fund sells the asset some time after learning that it is overpriced,

and then stays out of the market. However, in an extension of the model that incorporates

uninformative synchronizing events, something reminiscent of wavering emerges: funds sell

when a synchronizing event occurs, and, if the selling pressure fails to burst the bubble,

re-enter the market until the next such event, and so on.

Abreu and Brunnermeier’s (2003) predictions for investor behavior differ from ours in

at least two important ways. First, the Abreu and Brunnermeier (2003) model predicts

that the high volume we observe during bubble periods will manifest itself in the form of

occasional large spikes in volume. In our model, however, volume is high during bubbles on

a more “continuous” basis. To our eyes, the evidence on volume during bubble periods is

more consistent with the latter view.

Second, in Abreu and Brunnermeier (2003), hedge fund trading is highly correlated: funds

exit and re-enter the market at the same time, namely on the dates of the synchronizing

events. In our model, however, wavering is assumed to be uncorrelated across investors: the

extrapolators enter and exit the market at different times. This assumption is important: if

extrapolators’ trades are too highly correlated, our model will not generate high volume at

the peak of the bubble.

To distinguish the two models empirically, we compute the average pairwise correlation of

the times series of Δw—the quarterly change in a fund’s exposure to the internet sector—for

the five hedge funds represented in the lower panel of Figure 8. We find that this average is

a modest 0.19. In other words, consistent with our framework, but less consistent with the

AB model, changes in hedge fund exposure to the internet sector are relatively uncorrelated.

8. Conclusion

Although historical accounts of price bubbles typically emphasize extrapolative expecta-
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tions (Kindleberger 1978, Shiller 2000), recent models of bubbles have moved away from this

feature. In this paper, we embrace it. In our model, some investors hold extrapolative expec-

tations, but also waver in their convictions in that they worry more or less about the possible

overvaluation of the asset. The model generates occasional bubbles in asset prices. Such

bubbles occur in response to particular patterns of good news, a phenomenon Kindleberger

(1978) called displacement. They are characterized by very high trading volume documented

in earlier literature, which to a significant extent comes from the trading between the wa-

vering extrapolators. The model generates a new prediction that trading volume is driven

by high past returns which distinguishes it from some popular recent models and appears to

be consistent with some historical evidence.

Our analysis has left several important issues to future work. First, we have not addressed

the controversy of whether bubbles actually exist, and whether investors can tell in the

middle of a rapid price increase of an asset that it is actually overpriced. Second, even in the

context of our model, we have assumed a very simple and stabilizing form of arbitrage. This

specification does not consider the possibility of destabilizing arbitrage, whereby rational

investors buy an overpriced asset in the hope of selling at an even higher price to extrapolators

(De Long et al. 1990, Brunnermeier and Nagel 2004). But we also have not considered other

stabilizing forces, such as arbitrage by security issuers themselves through greater issuance or

asset creation (Galbraith 1954). Perhaps most important, we have adopted a standard but

ad-hoc formulation of extrapolative beliefs by some investors. The fundamental psychological

mechanisms of extrapolation remain to be understood.

9. Proofs

A micro-foundation for fundamental trader demand in equation (3).

Consider an economy with the timing and asset structure described at the start of Section

2. There are two types of trader: one type, which makes up a fraction μX of the population,

has time t per-capita demand for shares of the risky asset given by NX
t ; the other type,

which makes up a fraction μF of the population with μF = 1 − μX , is a fundamental trader

who, at time t, chooses his per-capita share demand NF
t by maximizing a utility function

with constant absolute risk aversion γ and defined over next period’s wealth. In other words,
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his objective is

max
NF

t

E
F
t

[
−e−γ(Wt+NF

t ( ePt+1−Pt))
]
. (A1)

This trader is boundedly rational, in a way that we make precise in what follows.

To determine his time t demand for the risky asset, the fundamental trader reasons as

follows. At the final date, date T , the price of the risky asset PT must equal the cash flow

realized on that date, so that PT = DT . At time T − 1, the fundamental trader’s first-order

condition implies that his share demand is

NF
T−1 =

E
F
T−1(P̃T ) − PT−1

γVarF
T−1(P̃T − PT−1)

=
DT−1 − PT−1

γσ2
ε

, (A2)

where we have used the fact that E
F
T−1(P̃T ) = DT−1 and have also assumed, for simplicity,

that the fundamental trader sets the conditional variance of price changes equal to the

variance of cash-flow shocks. Market clearing implies

μF

(
DT−1 − PT−1

γσ2
ε

)
+ μXNX

T−1 = Q, (A3)

which, in turn, implies

PT−1 = DT−1 − γσ2
ε

μF
(Q − μXNX

T−1). (A4)

At time T − 2, the fundamental trader’s demand is

NF
T−2 =

E
F
T−2(P̃T−1) − PT−2

γσ2
ε

. (A5)

It is here that his bounded rationality comes into play. To compute E
F
T−2(P̃T−1), in other

words, to compute the expectation of the quantity in (A4), he needs an estimate of E
F
T−2(N

X
T−1).

We assume that the fundamental trader does not try to forecast the evolution of the other

traders’ demand NX , but instead sets E
F
T−2(N

X
T−1) = Q; in other words, he assumes that the

other traders will simply hold an amount of the risky asset that corresponds to their weight

in the population. Under this assumption, E
F
T−2(P̃T−1) = DT−2 − γσ2

εQ, so that

NF
T−2 =

DT−2 − γσ2
εQ − PT−2

γσ2
ε

. (A6)

We assume that the fundamental trader continues to reason in this way, working back from

date T to the current time t, and, at each time, forecasting that the future per-capita demand
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from the other traders will simply equal Q. Under these assumptions,

NF
t =

Dt − γσ2
ε(T − t − 1)Q − Pt

γσ2
ε

, (A7)

which is equation (3).

A micro-foundation for extrapolator demand in equation (5).

Consider an economy with the timing and asset structure described at the start of Section

2. Now consider a trader who, at time t, maximizes a utility function with constant absolute

risk aversion γ and defined over next period’s wealth. In other words, his objective is

max
NX

t

E
X
t

[
−e−γ(Wt+NX

t ( ePt+1−Pt))
]
. (A8)

From the first-order condition, optimal demand is

NX
t =

E
X
t (P̃t+1) − Pt

γVart(P̃t+1 − Pt)
. (A9)

Suppose that this investor forms beliefs about future price changes by extrapolating past

price changes, so that

E
X
t (P̃t+1 − Pt) = (1 − θ)

∞∑
k=1

θk−1(Pt−k − Pt−k−1) ≡ Xt, (A10)

which, for an economy that starts at time 0, can be written as

E
X
t (P̃t+1 − Pt) = (1 − θ)

t−1∑
k=1

θk−1(Pt−k − Pt−k−1) + θt−1X1. (A11)

Suppose also, for simplicity, that he sets the conditional variance of price changes equal to

the variance of cash-flow shocks, namely σ2
ε . His demand then becomes

NX
t =

1

γσ2
ε

(
t−1∑
k=1

θk−1(Pt−k − Pt−k−1) + θt−1X1

)
, (A12)

as in (5).

Proposition 1. In the economy described in Section 2, a market-clearing price always exists

and is determined as follows. Let P i, i ∈ {0, 1, . . . , I}, be the risky asset price at which trader

i’s short-sale constraint starts to bind. Let NP i
be the aggregate risky asset share demand
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across all traders when the price equals P i. If maxi∈{0,1,...,I}NP i
< Q, then, in equilibrium,

all traders have strictly positive demand for the risky asset and the asset’s price equals

Pt = Dt +

∑I
i=1 μi(1 − wi,t)

μ0 +
∑I

i=1 μiwi,t

Xt − γσ2
εQ

(μ0 +
∑I

i=1 μiwi,t)(T − t − 1) + 1

μ0 +
∑I

i=1 μiwi,t

. (A13)

Otherwise, let i∗ be the value of i ∈ {0, 1, . . . , I} for which NP i
exceeds Q by the smallest

amount, and let I∗ be the set of i ∈ {0, 1, . . . , I} such that trader i has strictly positive

demand for the risky asset at price P i∗ . In this case, in equilibrium, only the traders in I∗

have strictly positive demand for the risky asset and the asset’s price equals

Pt = Dt +

∑
i∈I∗ μi(1 − wi,t)∑

i∈I∗ μiwi,t
Xt − γσ2

εQ
(
∑

i∈I∗ μiwi,t)(T − t − 1) + 1∑
i∈I∗ μiwi,t

. (A14)

Proof of Proposition 1. From expressions (9) and (10), we see that aggregate demand

for the risky asset, μ0N
F
t +

∑I
i=1 μiN

E,i
t , can take an arbitrarily high value if the price Pt is

sufficiently low, and a value as low as zero if the price is sufficiently high. Moreover, it is a

continuous function of Pt and is strictly decreasing in Pt until it falls to zero. Taken together,

these observations imply that there is a unique price Pt at which aggregate demand at time

t equals the supply Q.

We find the market-clearing price in the following way. As noted in the statement of

the proposition, we define P i to be the price at which trader i’s short-sale constraint binds,

namely

P 0 = Dt − γσ2
ε(T − t − 1)Q

P i = Dt − γσ2
ε(T − t − 1)Q +

1 − wi,t

wi,t
Xt, i ∈ {1, . . . , I}. (A15)

We now order these I + 1 “cut-off” prices, so that

P i(0) ≥ P i(1) ≥ . . . ≥ P i(I),

where i(l) indexes the trader i ∈ {0, 1, . . . , I} with the (l + 1)’th highest cut-off price. If

NP i(l)
is aggregate demand at price P i(l), we have

0 = NP i(0)
≤ NP i(1)

≤ . . . ≤ NP i(I)
.
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Finally, let I(l) be the set of traders i who have strictly positive demand at price P i(l). Note

that I(0) is the empty set and that I(l) is a subset of I(l + 1).

We consider two cases. Suppose that NP i(I)
< Q. This indicates that the market-clearing

price is below P i(I), and that, in equilibrium, all traders in the economy have strictly positive

demand. Aggregate demand at the market-clearing price Pt therefore equals

I∑
i=0

μi

[
wi,t

(
Dt − γσ2

ε(T − t − 1)Q − Pt

γσ2
ε

)
+ (1 − wi,t)

Xt

γσ2
ε

]
,

where w0,t ≡ 1, indicating that fundamental traders put a weight of 1 on the value signal.

Setting this aggregate demand equal to supply Q leads to the equilibrium price in (A13).

We now turn to the other case. Suppose that NP i(l)
≤ Q ≤ NP i(l+1)

. We then know that

the market-clearing price is somewhere between P i(l+1) and P i(l), and that, in equilibrium,

only the traders in the set I(l + 1), denoted I∗ in the statement of the proposition, have

strictly positive demand for the risky asset. Aggregate demand at the market-clearing price

Pt therefore equals

∑
i∈I(l+1)

μi

[
wi,t

(
Dt − γσ2

ε(T − t − 1)Q − Pt

γσ2
ε

)
+ (1 − wi,t)

Xt

γσ2
ε

]
.

Setting this equal to the risky asset supply Q, we obtain the equilibrium price in (A14). �

Proposition 2. Suppose that there is a continuum of extrapolators and that each extrapolator

draws an independent weight wi,t at time t from a bounded and continuous density g(w),

w ∈ [wl, wh], with mean w and with 0 < wl < wh < 1. Suppose that the economy has been

in its steady state up to time l − 1 and that there is then a sequence of positive shocks εl,

εl+1,. . ., εn that move the economy from the first stage of the bubble to the second stage at

some intermediate date j with l < j < n. Also suppose that the economy remains in its

second stage through at least date N > n.

No price spiral. If all the extrapolators are in the market at all dates—we specify the condition

for this below—the overpricing generated at time t by the cash-flow shocks εl, εl+1,. . ., εn is

Ot ≡ Pt − P F
t =

⎧⎨⎩
∑t−1

m=l L1(t − m)εm l ≤ t < j∑t−1
m=j L2(t − m)εm + O1

t j ≤ t ≤ N
, (A16)
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where O1
t is the contribution to the time t overpricing generated by the shocks {εi}j−1

i=l that

occurred during the first stage of the bubble and is given by

O1
t =

⎧⎪⎨⎪⎩
(α2 + θα2α

−1
1 )Oj−1 − α2Oj−2 + α2εj−1 − μ0

w(1 − μ0)
γσ2

εQ t = j

(α2 + θ)O1
t−1 − α2O1

t−2 −
μ0(1 − θ)

w(1 − μ0)
γσ2

εQ j < t ≤ N
, (A17)

where α1 ≡ (1−θ)(1−μ0)(1−w)/[μ0+(1−μ0)w] and α2 ≡ (1−θ)(1−w)/w. The quantities

{Li(j)}j≥0 are determined as follows. If αi < 2−θ−2
√

1 − θ or αi > 2−θ +2
√

1 − θ, then

Li(j) = 2−jαi[(αi + θ)2 − 4αi]
−0.5 ×[(

αi + θ +
√

(αi + θ)2 − 4αi

)j

−
(
αi + θ −

√
(αi + θ)2 − 4αi

)j
]

. (A18)

If 2 − θ − 2
√

1 − θ < αi < 2 − θ + 2
√

1 − θ, then

Li(j) = 2α0.5j+1
i

[
4αi − (αi + θ)2

]−0.5
sin(jβ), (A19)

where β = cos−1(0.5(αi + θ)α−0.5
i ). If αi = 2 − θ + 2

√
1 − θ or αi = 2 − θ − 2

√
1 − θ, then

Li(j) = jα
0.5(j+1)
i . (A20)

Price spiral. If, at some date j′, j ≤ j′ ≤ N , the overpricing Oj′ computed using (A16) is

greater than Ō ≡ [(1−wh) + (1− μ0)(wh − w̄)]γσ2
εQ/[(1− μ0)(wh − w̄)], then a price spiral

begins at j′. During the spiral, the time t overvaluation is

Ot =
1 − w̄(Xt)

w̄(Xt)
Xt + γσ2

εQ − γσ2
εQ

(1 − μ0)η(Xt)w̄(Xt)
, t ≥ j′, (A21)

where

w̄(Xt) =

∫ w∗

wl

wg(w)dw

/∫ w∗

wl

g(w)dw , η(Xt) =

∫ w∗

wl

g(w)dw, (A22)

w∗(Xt) is determined by

w∗γσ2
εQ = Xt(1 − μ0)

∫ w∗

wl

(w∗ − w)g(w)dw, (A23)

and the growth signal Xt evolves as

Xt =

⎧⎪⎪⎨⎪⎪⎩
θ[μ0 + (1 − μ0)w̄](Ot−1 − γσ2

εQ) + θγσ2
εQ

(1 − μ0)(1 − w̄)
+ (1 − θ)(Ot−1 −Ot−2 + εt−1 + γσ2

εQ) t = j′

θXt−1 + (1 − θ)(Ot−1 −Ot−2 + εt−1 + γσ2
εQ) j > j′

.

(A24)
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At each time t, extrapolators with wi,t < w∗(Xt) stay in the market, while those with wi,t ≥
w∗(Xt) stay out of the market. If the price spiral ends before time N , equations (A21), (A22),

and (A24) still apply but with w∗ set to wh.

Before we prove the proposition, we explain it in more detail. Equation (A16) gives the

magnitude of overvaluation in the absence of a price spiral. To understand it, suppose that,

up until time l − 1, the economy has been in its steady state, and that, at time l, there is

a unit cash-flow shock εl = 1, after which the cash-flow shocks revert to zero forever. The

quantities L1(1), L1(2), L1(3),. . . are equal to the overvaluation of the risky asset 1, 2, 3,. . .

periods after the shock, in other words, at dates l + 1, l + 2, l + 3,. . ., conditional on the

bubble staying in the first stage, so that fundamental traders and all extrapolators are in

the market. The first row of equation (A16) shows that our model has a linear structure, in

the sense that, during the first stage of the bubble, the total overvaluation at time t caused

by a sequence of shocks εl, εl+1, . . . , εt−1 is given by

L1(1)εt−1 + L1(2)εt−2 + . . . + L1(t − l)εl.

Now suppose that the bubble is in the second stage, but with no price spiral, so that

the fundamental traders are not in the market but all extrapolators are. Suppose that there

is a unit cash-flow shock at time j, εj = 1, after which the shocks equal zero forever. The

quantities L2(1), L2(2), L2(3),. . . measure how much additional overvaluation this shock

creates 1, 2, 3,. . . periods later, in other words, at dates j +1, j +2, j +3,. . ., relative to the

case in which εj = 0, and conditional on all extrapolators staying in the market. The second

row of equation (A16) shows that, in this second stage of the bubble, the total overvaluation

at time t caused by a sequence of shocks εl, εl+1, . . . , εn has two components. The first is

the overvaluation created by the cash-flow shocks that arise during the second stage of the

bubble. This is again linear in structure and equals

L2(1)εt−1 + L2(2)εt−2 + . . . + L2(t − j)εj.

The second component of the overvaluation, O1
t , is typically much smaller in magnitude.

It is the overvaluation at time t caused by the lingering effect of the cash-flow shocks that

occurred during the first stage of the bubble.
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Equations (A18), (A19), and (A20) provide explicit expressions for L1(·) and L2(·). They

show that Li(·) can take one of four shapes. The two most common shapes are a curve that

rises and then falls monotonically and a curve that oscillates with decreasing amplitude.

The other possibilities are a curve that oscillates with increasing amplitude and a curve that

increases monotonically.

Proof of Proposition 2. Given the assumptions about extrapolators in the statement of

Proposition 2 and the results from Proposition 1, the equilibrium price of the risky asset is

Pt = Dt + α1

∞∑
k=1

θk−1(Pt−k − Pt−k−1) − (T − t − 1)γσ2
εQ − γσ2

εQ

μ0 + (1 − μ0)w
(A25)

in the first stage of the bubble, where α1 ≡ (1−θ)(1−μ0)(1−w)
μ0+(1−μ0)w

. In the second stage of the

bubble, so long as all the extrapolators are in the market, the equilibrium price is

Pt = Dt + α2

∞∑
k=1

θk−1(Pt−k − Pt−k−1) − (T − t − 1)γσ2
εQ − γσ2

εQ

(1 − μ0)w
, (A26)

where α2 ≡ (1−θ)(1−w)
w

> α1.

From (4), (A25), and (A26), the level of overpricing Ot, defined as the difference between

the price of the risky asset and its fundamental value, is

Ot =

⎧⎪⎪⎨⎪⎪⎩
1 − w

w
Xt − γσ2

εQ

(1 − μ0)w
+ γσ2

εQ Xt >
γσ2

εQ

(1 − μ0)(1 − w)
(1 − μ0)(1 − w)

μ0 + (1 − μ0)w
Xt − γσ2

εQ

μ0 + (1 − μ0)w
+ γσ2

εQ Xt ≤ γσ2
εQ

(1 − μ0)(1 − w)

. (A27)

Note that Ot is continuous at the switching point between the first and second stages of

the bubble; at this point, Ot = γσ2
εQ. Also note that, when the value of Xt equals its

steady-state level of γσ2
εQ, the overpricing is zero; in this case, the per-capita demand of

both extrapolators and fundamental traders for the risky asset equals the supply Q.

From (A25) and (A26) it is apparent that, if the economy stays within stage one or within

stage two and if all the extrapolators are in the market, the model has a linear structure: in

stage i, a fundamental shock of εt1 at t1 and a fundamental shock of εt2 at t2 generate, at a

later time t, a total overvaluation of Li(t− t1)εt1 +Li(t− t2)εt2 . It is also straightforward to

check that L1(·) and L2(·) can be defined recursively as

Li(0) = 0, Li(1) = αi, Li(l) = (αi + θ)Li(l − 1) − αiLi(l − 2), l ≥ 2 for i = 1, 2. (A28)
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This is a standard difference equation with the general solution

Li(j) = A1(K1)
j + A2(K2)

j , (A29)

where K1 and K2 are the roots of the quadratic equation

K2 − (αi + θ)K + αi = 0 (A30)

and where A1 and A2 can be obtained from the boundary conditions Li(0) = 0 and Li(1) =

αi. When (αi + θ)2 > 4αi, (A30) has two real roots; matching (A29) with the boundary

conditions gives (A18). When (αi + θ)2 < 4αi, (A30) has two complex roots with non-zero

imaginary components; matching (A29) with the boundary conditions gives (A19). When

(αi + θ)2 = 4αi, applying L’Hôpital’s rule to either (A18) or (A19) gives (A20).

The linear structure implies that, at time t with l ≤ t < j, the overpricing caused by

{εi}t−1
i=l is

∑t−1
m=l L1(t−m)εm; and that, at time t with j ≤ t ≤ N , the additional overpricing

caused by {εi}t−1
i=j is

∑t−1
m=j L2(t − m)εm.

We now derive O1
t at time t ≥ j. For t = j,

Xj = (1 − θ)(Pj−1 − Pj−2) + θXj−1. (A31)

From (A16) we know

Pj−1 − Pj−2 = Oj−1 −Oj−2 + εj−1 + γσ2
εQ (A32)

and

Xj−1 =
μ0 + (1 − μ0)w

(1 − μ0)(1 − w)

(
Oj−1 +

γσ2
εQ

μ0 + (1 − μ0)w
− γσ2

εQ

)
. (A33)

Substituting (A32) and (A33) into (A31), and then substituting (A31) back into (A27) gives

O1
j in (A17). For j < t ≤ N , similar steps lead to O1

t in (A17).

Substituting the price equation (A26) into the extrapolator share demand in (10) shows

that, whenever Xt > whγσ2
εQ/[(1 − μ0)(wh − w̄)], the extrapolator with wi,t = wh exits

the market and hence a price spiral occurs. (A27) shows that this condition is equivalent

to Ot > Ō. Applying (A27) at time j′ − 1 gives Xj′−1 as a function of Oj′−1, and further

applying (A31) and (A32) gives (A24).
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Assume that, at time t, extrapolators with wi,t ∈ [wl, w
∗) are in the market. Integrating

the share demands of these extrapolators in (10) and equating the result to the aggregate

per-extrapolator supply of Q/(1 − μ0) gives (A21) and (A22). Setting the share demand of

the extrapolator with wi,t = w∗ to zero then gives (A23). Given that Xt > whγσ2
εQ/[(1 −

μ0)(wh − w̄)], the left-hand side of (A23) is smaller than the right-hand side when w∗ = wh;

however the left-hand side of (A23) is greater than the right-hand side when w∗ = wl. As a

result, there must exist a w∗ that solves (A23). �

Proof of Proposition 3. Substituting the equilibrium asset price in (A25) and (A26) into

extrapolator i’s share demand in (10) gives

NE,i
t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max

(
w − wi,t

wγσ2
ε

Xt +
wi,tQ

(1 − μ0)w
, 0

)
Xt >

γσ2
εQ

(1 − μ0)(1 − w)

max

(
μ0(1 − wi,t) + (1 − μ0)(w − wi,t)

(μ0 + (1 − μ0)w)γσ2
ε

Xt +
wi,tQ

μ0 + (1 − μ0)w
, 0

)
Xt ≤ γσ2

εQ

(1 − μ0)(1 − w)

.

(A34)

From (A34) we know that, when −wlγσ2
εQ/[μ0(1−wl)+(1−μ0)(w−wl)] ≤ Xt < γσ2

εQ/[(1−
μ0)(1−w)], both fundamental traders and extrapolators stay in the market. The component

of the change in extrapolator i’s share demand between time t and t + 1 that is due to

wavering is
(wi,t+1 − wi,t)(γσ2

εQ − Xt+1)

(μ0 + (1 − μ0)w)γσ2
ε

. (A35)

Taking the absolute value of this quantity—conditional, for simplicity, on Xt+1 = Xt—and

integrating over wi,t+1 and wi,t shows that wavering-induced trading volume is equal to

|Xt − γσ2
εQ|Δ0

(μ0 + (1 − μ0)w)γσ2
ε

, (A36)

where Δ0 is defined in (16). When γσ2
εQ/[(1−μ0)(1−w)] ≤ Xt ≤ whγσ2

εQ/[(wh−w)(1−μ0)],

the component of the change in extrapolator i’s share demand between t and t + 1 that is

due to wavering is
(wi,t+1 − wi,t)(γσ2

εQ − (1 − μ0)Xt+1)

(1 − μ0)wγσ2
ε

. (A37)

A similar calculation to the one used to obtain (A36) shows that, in this case, wavering-

induced trading volume is given by

((1 − μ0)Xt − γσ2
εQ)Δ0

(1 − μ0)wγσ2
ε

. (A38)
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When Xt > whγσ2
εQ/[(wh − w)(1 − μ0)], extrapolators with a sufficiently high level of

w stay out of the market but may re-enter in the next period. For those extrapolators who

stay in for both periods, replace w, 1 − μ0, and Δ0 in (A38) by w(Xt), (1 − μ0)η(Xt), and

Δ(Xt), respectively, where

w(Xt) ≡ η−1(Xt)

∫ wη(Xt)

wl

g(w)wdw

η(Xt) ≡
∫ wη(Xt)

wl

g(w)dw

Δ(Xt) ≡
∫ wη(Xt)

wl

g(w1)dw1

∫ wη(Xt)

wl

|w1 − w2|g(w2)dw2,

and where wη(Xt) is the implicit solution to

(1 − μ0)wη

(∫ wη

wl

g(w)dw

)
Xt − wηγσ2

εQ = (1 − μ0)

(∫ wη

wl

g(w)wdw

)
Xt. (A39)

For those extrapolators who are in at time t but out at time t + 1, their change in share

demand is
Xt

γσ2
ε

− wi,t((1 − μ0)η(Xt)Xt − γσ2
εQ)

(1 − μ0)η(Xt)γσ2
εw(Xt)

≥ 0 (A40)

for wi,t ≤ wη(Xt). Integrating (A40) over wi,t from wl to wη(Xt) and then further integrating

it over wi,t+1 from wη(Xt) to wh gives ((1−η(Xt))Q)/(1−μ0). The trading volume generated

by extrapolators who are out at time t but in at time t + 1 can be computed in a similar

way; it also equals ((1 − η(Xt))Q)/(1 − μ0). Overall, wavering-induced trading volume in

this case equals

(η(Xt)Xt − γσ2
εQ(1 − μ0)

−1)Δ(Xt)

η(Xt)w(Xt)γσ2
ε

+
2(1 − η(Xt))Q

1 − μ0
. (A41)

Taking the derivative of expressions (A36), (A38), and (A41) gives the results in Propo-

sition 3. �
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Figure 1: Prices in a bubble. The solid line plots the price of the risky asset for the

following sequence of 50 cash-flow shocks: 10 shocks of zero, followed by shocks of 2, 4, 6, 6,

followed by 36 shocks of zero. 30% of the investors are fundamental traders; the remainder

are extrapolators with an extrapolation parameter θ of 0.9 and who also put a base weight

wi = 0.1 on a value signal. The dashed line plots the fundamental value of the asset for

the same cash-flow sequence. The other parameters are D0 = 100, σε = 3, Q = 1, γ = 0.1,

σu = 0.03, and I = 50.
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Figure 2: Comparative statics. The four graphs correspond to four model parameters:

μ0, w̄, θ, and σu. In each graph, the solid line plots the maximum overvaluation of the risky

asset across the T = 50 dates for the same sequence of cash-flow shocks used in Figure 1; the

dashed line plots trading volume on the date of peak overvaluation. The solid and dashed

lines are computed by varying the value of the parameter on the horizontal axis while keeping

the values of the other parameters at the benchmark levels specified in Section 2.
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Figure 3: Price spiral. The solid line plots the price of the risky asset for the following

sequence of 50 cash-flow shocks: 10 shocks of zero, followed by shocks of 2, 4, 6, 6, 12, 10,

followed by 34 shocks of zero. 30% of the investors are fundamental traders; the remainder

are extrapolators with an extrapolation parameter θ of 0.9 and who also put a base weight

wi = 0.1 on a value signal. The dashed line plots the fundamental value of the asset for

the same cash-flow sequence. The dash-dot line plots the price in an economy where the

extrapolators are homogeneous, placing the same invariant weight of wi = 0.1 on the value

signal. The other parameters are D0 = 100, σε = 3, Q = 1, γ = 0.1, σu = 0.03, and I = 50.
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Figure 4: Share demands in a bubble. The solid lines plot the risky asset share

demands of extrapolators for the following sequence of 50 cash-flow shocks: 10 shocks of

zero, followed by shocks of 2, 4, 6, 6, followed by 36 shocks of zero. The dashed line plots

the share demand of the fundamental traders for the same cash-flow sequence. 30% of the

investors are fundamental traders; the remainder are extrapolators with an extrapolation

parameter θ of 0.9 and who also put a base weight wi = 0.1 on a value signal. The other

parameters are D0 = 100, σε = 3, Q = 1, γ = 0.1, σu = 0.03, and I = 50.
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Figure 5: Volume in a bubble. The solid line plots the total trading volume in the risky

asset for the following sequence of 50 cash-flow shocks: 10 shocks of zero, followed by shocks

of 2, 4, 6, 6, followed by 36 shocks of zero. The dashed line plots the trading volume between

the extrapolators for the same cash-flow sequence. 30% of the investors are fundamental

traders; the remainder are extrapolators with an extrapolation parameter θ of 0.9 and who

also put a base weight wi = 0.1 on a value signal. The other parameters are D0 = 100,

σε = 3, Q = 1, γ = 0.1, σu = 0.03, and I = 50.
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Panel A: Bubble of 1929, stock prices of utilities Panel B: Bubble of 1929, 12-month returns and turnover of utilities 

Panel C: Technology stock bubble, stock prices Panel D: Technology stock bubble, 12-month returns and turnover 

  

Figure 6: Prices, returns, and volume during bubble episodes. Prices, past 12-month returns, and value-weighted turnover during 
four bubbles episodes: utility stocks in 1929; technology stocks in 1998-2000; house prices in 2004-2006 as measured by the Case-
Shiller 20-City Index; and oil in 2007-2008 as proxied by the price of the USO ETF. All data are monthly and value-weighted across 
stocks. For housing, turnover is measured as the number of existing-home sales.   
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Panel E: Housing bubble of 2004-2006, price index Panel F: Housing bubble of 2004-2006, 12-month returns and volume 

Panel G: 2007-2008 Commodity bubble, USO price Panel H: 2007-2008 Commodity bubble, 12-month returns and turnover of 
USO 

 

Figure 6: Prices, returns, and volume during bubble episodes [continued].
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Figure 7: Composition of volume during a bubble. In each quarter t from 1997 to 2002, and for 
each technology stock i, we compute Volume_Momi,t, a measure of the extent to which trading in 
stock i in quarter t is due to mutual funds with extrapolator-like characteristics. To determine 
whether a fund is extrapolator-like, we look at its holdings six months earlier, in quarter t-2, and 
check whether these holdings earned high returns over the previous year. For each quarter, the 
figure plots the equal-weighted average of Volume_Momi,t across all technology stocks in that 
quarter. 
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Panel A. Mutual fund net purchases 

 

Panel B. Hedge fund net purchases 

 

 

Figure 8: Wavering by mutual funds and hedge funds. The figure shows the active change in 
weight in internet stocks, defined as the net purchases of internet stocks in that quarter as a 
percentage of the total portfolio value. Panel A shows net purchases for the ten largest mutual 
fund holders of internet stocks during the bubble. Panel B shows net purchases for the five 
largest hedge fund holders. Purchases and sales are based on split-adjusted holdings from the 
Thomson mutual fund and institutional ownership database. 
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Online Appendix for “Extrapolation and Bubbles” 

 

In this Appendix, we show that the most important predictions of our model 
continue to hold even when we replace the boundedly-rational fundamental traders by 
fully rational traders. Specifically, we show that a sequence of strongly positive cash-
flow shocks again generates a large overvaluation relative to fundamental value, and also 
that a significant fraction of the volume during the height of the bubble consists of 
trading among the wavering extrapolators. 

In the model we study below, all investors can short. We have removed the short-
sale constraint for tractability, but also to demonstrate that, as claimed in Section 4, our 
main conclusions do not depend on the short-sale constraint, but only on the presence of 
wavering extrapolators. 

Model setup 

Asset structure 

There is a risky asset which pays a single dividend at time T that evolves as: 

 0 1
2

2 (0,, . . , .. )T T tD iD i d t         N  (1) 

Investor wealth not invested in the risky asset can be carried into the future at an interest 
rate that is normalized to zero. 

The price of the risky asset at time t is denoted Pt, and its per-capita supply is 
fixed at Q. 

Investors 

There are two types of investors in the economy: extrapolators and fully rational 
traders, who constitute a fraction E and R of the total population, respectively, so that 

 1.E R    (2) 

As in Propositions 2 and 3 of the paper, there is a continuum of extrapolators, and 
each extrapolator draws an independent weight ,i tw at time t from a bounded and 
continuous density g(w), , ][ ,l hw ww with mean w and with 0 1.l hw w   These 
weights are independent across extrapolators and independent over time, and  
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Type i extrapolators’ demand function at time t is  

 ,

2

, ,2 2

( 1)
(1 , 0,1, , 1( ) ) ,E t t

t i t i
t

ti t

D T t Q P X
w wN w t T

 


   


   




 
  (4) 

where 



2 
 

 
2

1 1 1
1 11

0
.

(1 ( 1))
tt k t

t k t kk

Q t

P P
X

X t



  
  

 

    
 

  
 (5) 

Note that, for any t  1, we have the following recursive relation for Xt: 

 1 1( ).)(1t t t tX X PP       (6) 

The second type of investors are rational traders who are fully aware of 
extrapolators’ demand in (4), the structure of extrapolator wavering, and the market 
clearing condition 

 ( ) ( ) , 0,1, 2, , 1.
h

l

w E R
Rw t tg w N w dw N Q t T      (7) 

To determine their demand ,R
tN the rational investors take the current price as given and 

solve the following problem 

   1[max exp ( )] .
R
t

t t t t
R R R

t
N

N P PW      (8) 

Proposition. In this economy, the price of the risky asset at time t is given by 
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where the two factors, f and g, are defined by 
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for n  1, and 0 0 1.f g   

Proof of Proposition. We derive the equilibrium price of the risky asset through the 
maximization problem of the fully rational investors. We assume and later verify that, 
conditional on all information up to time t, the rational (i.e. true) distribution of 1tP is 
Normal. Given this assumption, (8) leads to 

 1 1( ) ( ) ( ) (Va )r .
h

R
l

R E
t t t t t t t

wR

w
P P P P Q g w N w dw

     
    (11) 

We now apply backward induction to derive the equilibrium risky asset price. At t 
 T  1, , 11 ,, ,i TT iD w   and 1TP  are all realized or known. Knowing that ,T TP D we must 
have 

 111 1
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As a result 
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Rearranging terms gives 
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At t  T  2, (14) implies that 1TP  has a Normal distribution. As a result, it is valid 
to use (11) to determine the risky asset price at t  T  2, and the rational investors 
compute the conditional expectation and conditional variance of 1TP  as follows 

 

 

 

11
2

2

1

2 32
1

2 2

) 1

(1

(

)
[1 ( (1 .)) ]

R
T R E

E
R E T T

R

T

T T

P w

w
w Q XD PP






 
 


 

 

         

 


   

 





 



 (15) 

 1
2

2 2Var ( ) .TT
R

T P P     (16) 

Substituting (15) and (16) back into (11) for t  T  2 gives 
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Rearranging terms gives 
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where  
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Continuing in this way leads to expressions (9) and (10). In addition, (9) and (10) 
verify the assumption that, conditional on all information up to time t, the rational 
distribution of 1tP is indeed Normal.    

Asset pricing implications  

We first examine the pricing implications of this model. Specifically, we study an 
economy where 70% of investors are extrapolators and 30% are fully rational traders, and 
consider the same sequence of 50 cash-flow shocks that we used in several of the 
examples in the paper: 10 shocks of zero, followed by shocks of 2, 4, 6, 6, followed by 36 
shocks of zero. In Figure A1, we plot the price of the risky asset and the fundamental 
value of the asset. 

Figure A1 can be directly compared to Figure 1 in the paper. All else equal, 
removing the short-sale constraint for all investors tends to reduce the size of the bubble: 
in an economy where 70% of investors are extrapolators and 30% are boundedly-rational 
fundamental traders and where all investors can short, the bubble size is typically small. 
However, replacing the boundedly-rational fundamental traders by fully rational traders 
tends to increase the size of the bubble: since rational traders are fully aware of the 
persistence of extrapolator beliefs, they do not trade aggressively against mispricing.  
Interestingly, Figure A1 shows that the second effect can dominate: the bubble in this 
example is larger than the bubble presented in Figure 1 of the paper. A sequence of 
strongly positive cash-flow shocks can therefore lead to a large overvaluation even when 
fully rational traders are present in the economy, and even when all investors can short. 
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Figure A1: Prices in a bubble. The solid line plots the price of the risky asset for the 
following sequence of 50 cash-flow shocks: 10 shocks of zero, followed by shocks of 2, 
4, 6, 6, followed by 36 shocks of zero. 30% of the investors are rational traders; the 
remaining 70% are a continuum of extrapolators with an extrapolation parameter  of 0.9 
and where each extrapolator draws a weight w on the value signal from a bounded and 
continuous density g(w) with mean w of 0.1. The dashed line plots the fundamental value 
of the asset for the same cash-flow sequence. The other parameters are 0D  100,   3, Q 
 1, and   0.1. 

Volume implications 

We now look at the trading implications of the model with fully rational traders. 
While we would like to compute trading volume for a finite number of extrapolator types, 
the pricing equation in (9) assumes a continuum of extrapolators. To proceed, we assume 
that the equilibrium price follows (9) exactly even when there are I types of extrapolators 
rather than a continuum of them; we have checked that this is a very accurate 
approximation. 

In Figure A2, we plot the total trading volume in the risky asset (solid line) and 
the trading volume between extrapolators (dashed line) in an economy where 70% of 
investors consist of 50 extrapolator types and 30% are fully rational traders. The cash-
flow shocks are the same as those in Figure A1. For the 50 types of extrapolators, their 
weights on the value signal are generated by the wavering model in equation (8) of the 
paper. Also as in the paper, we truncate the wavering component ,i tu at 0.9 min( )1 , .w w   
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Figure A2 below can be directly compared to Figure 4 in the paper. Removing the 
short-sale constraint and replacing fundamental traders by fully rational traders increases 
the total trading volume at the peak of the bubble because shorting allows rational 
investors to trade heavily during bubbles. At the same time, trading between extrapolators 
makes up a significant portion (around 40%) of total trading volume. In other words, the 
prediction of our original model that a significant amount of trading during bubbles 
comes from trading between extrapolators continues to hold even in the presence of fully 
rational traders.  

 

Figure A2: Volume in a bubble. The solid line plots the total trading volume in the 
risky asset for the following sequence of 50 cash-flow shocks: 10 shocks of zero, 
followed by shocks of 2, 4, 6, 6, followed by 36 shocks of zero. The dashed line plots the 
trading volume between the extrapolators for the same cash-flow sequence. 30% of the 
investors are rational traders; the remaining 70% are 50 types of extrapolators with an 
extrapolation parameter  of 0.9 and where each extrapolator puts a base weight w of 0.1 
on the value signal. The other parameters are 0D  100,   3, Q  1,   0.1, and u  

0.03.          
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